Д. Менделеев и Периодический закон. Открытие периодического закона химических элементов Д.И. Менделеевым

ДОКЛАД

На тему:

«Жизнь и деятельность Д.И.Менделеева»

Выполнила студентка 1 курса

Группы 16-ЭО-1

Степанова Екатерина

Биография

Дмитрии Иванович Менделеев родился 27 января 1834 г. в Тобольске. Его отец после окончания в Петербурге педагогического института преподавал словесность в гимназиях Пензы, Тамбова и Саратова. Переехав в Сибирь, он познакомился с дочерью некогда богатого купца Корнильева Марией Дмитриевной. Корнильевы играли важную роль в культурной жизни Сибири, основали типографию, издавали журнал. В их доме была одна из лучших библиотек того времени.

Когда Д. И. Менделеев был еще ребенком, отец его, Иван Павлович, ослеп и вынужден был выйти на пенсию. Оказавшись в трудном материальном положении и имея большую семью, Мария Дмитриевна переехала в деревню Аремзянка, где находился заброшенный стекольный заводик, принадлежавший ее брату В. Д. Корнильеву, переехавшему в Москву и служившему управляющим в имении князей Трубецких.

Тобольск был неофициальной столицей Сибирского края. Город в прошлом имел важное значение как торговый и культурный центр. Память о Ермаке, рассказы сосланных туда декабристов- участников восстания на Сенатской площади в Петербурге в 1825 г., рассказы учителя Тобольской гимназии П. П. Ершова, автора сказки «Конек-Горбунок», о встречах с А. С. Пушкиным - все это возбуждало воображение жителей города, захватывало своей необычностью, широтой, разнообразием событий. Неудивительно, что детские игры в семье Менделеевых были связаны с путешествиями, походами за Тобол, увлечением историческими описаниями...

В гимназии Д. И. Менделеев увлекся историей, географией, русской литературой, позже математикой и физикой. Дмитрий любил решать головоломки, задачи, а дома играл в «учителя», причем старшим братьям и сестрам нередко приходилось трудно, так как удовлетворить строгого экзаменатора могли только быстрота мышления, неизвестные ему факты или сказанные к месту афоризмы. В доме царила трудовая и доброжелательная обстановка, в чем главная роль принадлежала Марин Дмитриевне.

В 1847 г. отец умер, а в 1849 г. Дмитрий окончил гимназию, старшие братья и сестры уже нашли свое место в жизни, - ничто не задерживало больше Марию Дмитриевну в Тобольске; она задалась целью дать самому младшему сыну хорошее образование и отправилась с детьми Митей и Лизой, а также верным слугой Яковом в Москву к В. Д. Корнильеву.
Не найдя поддержки у брата, Мария Дмитриевна поехала в Петербург, здесь в университете работал друг ее мужа, профессор математики Чижов.

Он получил разрешение Дмитрию Менделееву, как сыну учителя, поступить в Главный педагогический институт в неприемный год. Обучаясь в этом институте с 1850 пo 1855 г., Дмитрий Иванович избрал химию своей специальностью. Будущий учитель гимназии слушал лекции выдающихся ученых своего времени: физику читал академик Э. Х.Линц, математику- академик М. В. Остроградский, зоологию - академик Ф. Ф. Бранд. Особенно заинтересовался Д. И. Менделеев химией, которую читал А. А. Воскресенский, минералогией и ботаникой.

Уже будучи студентом, Д. И. Менделеев собрал гербарий, участвовал в описании фауны Петербургской губернии, осуществил анализ минералов пироксена и ортита, привезенных С. С. Куторгой из минералогических экспедиций, провел первые химические эксперименты в лабораториях института и Академии наук, просмотрел большое число научных статей и монографий, готовя «пробные лекции» по педагогике, зоологии, химии и минералогии. Завершил Д. И. Менделеев свою учебу в институте подачей двух кандидатских диссертаций (так назывались тогда дипломные работы): одна была посвящена описанию грызунов Петербургской губернии, другая - изучению взаимосвязи кристаллических форм и соединений с их составом и некоторыми свойствами атомов, из которых построены эти соединения.

Д. И. Менделеев окончил институт с золотой медалью и получил звание старшего учителя. А между тем его жизнь в столице не была легкой: вскоре после переезда в Петербург умерла его мать, он сам много болел. Первый год после окончания института Д. И. Менделеев работал в гимназиях Симферополя и Одессы. Однако после защиты магистерской диссертации в начале осени 1856 г. он был переведен на службу в Петербургский университет, а в 1859 г. отправлен в заграничную командировку для «подготовки к профессорскому званию».

Предпосылки

Конечно, начиная рассказывать об открытиях гениального ученого, нельзя не осветить главное открытие Д.И. Менделеева – Периодический закон.

Ко времени открытия Периодического закона было известно 63 химических элемента, описаны состав и свойства их многочисленных химических соединений.

Многие ученые пытались классифицировать химические элементы. Одним из них был выдающийся шведский химик Й. Я. Берцелиус. Он разделил все элементы на металлы и неметаллы на основе различий в свойствах образованных ими простых веществ и соединений. Он определил, что металлам соответствуют основные оксиды и основания, а неметаллам – кислотные оксиды и кислоты. Но групп было всего две, они были велики и включали значительно отличающиеся друг от друга элементы. Наличие амфотерных оксидов и гидроксидов у некоторых металлов вносило путаницу. Классификация была неудачной.

Многие ученые предполагали периодичность свойств элементов и зависимость их от атомных масс, но грамотную и систематическую классификацию предложить не смогли.

Очередной предпосылкой открытия Периодического закона послужили решения международного съезда химиков в г. Карлсруэ в 1860 г., когда окончательно утвердилось атомно-молекулярное учение, были приняты первые единые определения понятий молекулы и атома, а также атомного веса, который теперь называется относительной атомной массой. Именно это понятие как неизменную характеристику атомов химических элементов Д.И. Менделеев положил в основу своей классификации. Предшественники ученого сравнивали между собой только сходные элементы, а поэтому не смогли открыть Периодический закон.

Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

Но без личностных качеств великого химика, которые составляют последнюю, субъективную предпосылку открытия Периодического закона, вряд ли он бы открыт в 1869 г. Энциклопедичность знаний, научная интуиция, умение обобщать, постоянное стремление к познанию неведомого, дар научного предвидения Д.И. Менделеева сыграли свою немалую роль в открытии Периодического закона.

Открытие периодического закона

В основу своей работы по классификации химических элементов Д.И. Менделеев положил два их основных и постоянных признака: величину атомной массы и свойства. Он выписал на карточки все известные сведения об открытых и изученных в то время химических элементах и их соединениях. Сопоставляя эти сведения, ученый составил естественные группы сходных по свойствам элементов, сравнение которых между собой показало, что даже элементы несходных групп имеют объединяющие их признаки. Например, близки по значениям атомные массы фтора и натрия, хлора и калия (инертные газы еще не были известны), следовательно, щелочные металлы и галогены можно поставить рядом, выстраивая химические элементы в порядке возрастания атомных масс. Так Д.И. Менделеев объединил естественные группы химических элементов в единую систему. При этом он обнаружил, что свойства элементов изменяются в пределах определенных их совокупностей линейно (монотонно возрастают или убывают), а затем повторяются периодически, то есть через определенное число элементов встречаются сходные. Ученый выделил периоды, в которых свойства химических элементов и образованных ими веществ закономерно изменяются.

На основании этих наблюдений Д.И. Менделеев сформулировал Периодический закон, который в соответствии с принятой в настоящее время терминологией звучит так: «Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от их относительных атомных масс».

Периодический закон и Периодическая система богаты периодическими закономерностями: кроме упоминаемой горизонтальной (по периодам) периодичности есть также периодичность вертикальная (по группам) и диагональная. Именно учет всех видов периодичности позволил Д.И. Менделееву не только предсказать, описать свойства веществ, образованных еще не открытыми химическими элементами, но и указать путь их открытия, природные источники (руды и соединения), из которых могли быть получены соответствующие простые вещества.


Похожая информация.


Периодический закон сформулирован Д. И. Менделеевым в \(1869\) году. К этому времени было известно \(63\) химических элемента. В качестве основного свойства элементов Менделеев выбрал относительную атомную массу . Учитывал также состав, физические и химические свойства образованных элементом простых и сложных веществ.

Расположив все известные химические элементы в порядке возрастания атомных масс, Менделеев обнаружил, что свойства повторяются через определённое число элементов.

Повторим действия Менделеева с учётом того факта, что благородные газы в его время ещё не были известны. Расположим элементы по возрастанию атомной массы (вторая строчка таблицы), укажем металлические и неметаллические свойства, формулы и свойства высших оксидов и гидроксидов, а также формулы газообразных водородных соединений.

Если внимательно проанализировать полученные последовательности, то можно увидеть повторяемость металлических и неметаллических свойств, состава и свойств соединений. Через семь элементов от щелочного металла лития в ряду располагается щелочной металл натрий, а через семь элементов от галогена фтора - галоген хлор. Через семь элементов появляются одинаковые формулы оксидов и водородных соединений, так как повторяются значения валентностей в соединениях с кислородом и водородом. Можем составить их общие формулы.

Формулы высших оксидов: R 2 O , RO , R 2 O 3 , R O 2 , R 2 O 5 , R O 3 , R 2 O 7 .

Летучие водородные соединения (для неметаллов): R H 4 , R H 3 , R H 2 , RH .

Таким образом Менделеев установил периодичность изменения свойств с возрастанием атомной массы. В статье «Периодическая закономерность химических элементов» Д. И. Менделеев дал следующую формулировку периодического закона:

«Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от атомного веса».

В переводе на современный научный язык это звучит так:

«Свойства простых веществ, а также состав и свойства соединений элементов находятся в периодической зависимости от относительных атомных масс».

Все элементы Менделеев разделил на периоды.

Период - ряд элементов, расположенных в порядке возрастания относительной атомной массы, начинающийся щелочным металлом и заканчивающийся галогеном и инертным газом.

В периоде:

  • постепенно ослабляются металлические свойства простых веществ и усиливаются неметаллические;
  • высшая валентность элементов по кислороду возрастает от I (у щелочных металлов) до VII (у галогенов);
  • валентность элементов неметаллов в летучих водородных соединениях уменьшается от IV до I (у галогенов);
  • свойства высших оксидов и гидроксидов постепенно изменяются от основных через амфотерные до кислотных.

Периодический закон получил дальнейшее развитие после изучения физиками строения атома. Оказалось, что главной характеристикой химического элемента является не относительная атомная масса, а заряд ядра атома. Современная формулировка периодического закона несколько изменена:

«Свойства химических элементов и их соединений находятся в периодической зависимости от зарядов атомных ядер».

Реферат

«История открытия и подтверждения периодического закона Д.И. Менделеева»

Санкт-Петербург 2007


Введение

Периодический закон Д.И. Менделеева – это фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д.И. Менделеевым в феврале 1869 г. При сопоставлении свойств всех известных в то время элементов и величин их атомных масс (весов). Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «…свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.


1. Попытки других ученых вывести периодический закон

Периодическая система, или периодическая классификация, элементов имела огромное значение для развития неорганической химии во второй половине XIX в. Это значение в настоящее время колоссально, потому что сама система в результате изучения проблем строения вещества постепенно приобрела ту степень рациональности, которой невозможно было достичь, зная только атомные веса. Переход от эмпирической закономерности к закону составляет конечную цель всякой научной теории.

Поиски основы естественной классификации химических элементов и их систематизации начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX в. число известных химических элементов было ещё слишком невелико, а принятые значения атомных масс многих элементов неточны.

Не считая попыток Лавуазье и его школы дать классификацию элементов на основе критерия аналогии в химическом поведении, первая попытка периодической классификации элементов принадлежит Дёберейнеру.

Триады Дёберейнера и первые системы элементов

В 1829 г. немецкий химик И. Дёберейнер предпринял попытку систематизации элементов. Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами: Li–Na–K; Ca–Sr–Ba; S–Se–Te; P–As–Sb; Cl–Br–I.

Сущность предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме (среднему арифметическому) атомных масс двух крайних элементов триады. Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами.

Идеи Дёберейнера были развиты Л. Гмелиным, который показал, что взаимосвязь между свойствами элементов и их атомными массами значительно сложнее, нежели триады. В 1843 г. Гмелин опубликовал таблицу, в которой химически сходные элементы были расставлены по группам в порядке возрастания соединительных (эквивалентных) весов. Элементы составляли триады, а также тетрады и пентады (группы из четырёх и пяти элементов), причём электроотрицательность элементов в таблице плавно изменялись сверху вниз.

В 1850-х гг. М. фон Петтенкофер и Ж. Дюма предложили т.н. дифференциальные системы, направленные на выявление общих закономерностей в изменении атомного веса элементов, которые детально разработали немецкие химики А. Штреккер и Г. Чермак.

В начале 60-х годов XIX в. появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

А. де Шанкуртуа располагал все известные в то время химические элементы в единой последовательности возрастания их атомных масс и полученный ряд наносил на поверхность цилиндра по линии, исходящей из его основания под углом 45° к плоскости основания (т.н. земная спираль ). При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т.д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы – ничего общего с ними не имеющий титан.

Таблица Ньюлендса

Английский учёный Дж. Ньюлендс в 1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав . Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

В том же 1864 г. появилась первая таблица немецкого химика Л. Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

В 1870 г. вышла работа Мейера, содержащая новую таблицу под названием «Природа элементов как функция их атомного веса», состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин «периодичность», уже предложенный к тому времени Менделеевым.

2. Что было сделано до дня великого открытия

Предпосылки открытия периодического закона следует искать в книге Д.И. Менделеева (далее Д.И.) «Основы химии». Первые главы 2-й части этой книги Д.И. написал в начале 1869 г. 1-я глава была посвящена натрию, 2-я – его аналогам, 3-я – теплоемкости, 4-я – щелочноземельным металлам. Ко дню открытия периодического закона (17 февраля 1869 г.) он, вероятно, уже успел изложить вопрос о соотношении таких полярно-противоположных элементов, как щелочные металлы и галоиды, которые были сближены между собой по величине их атомности (валентности), а также вопрос о соотношении самих щелочных металлов по величине их атомных весов. Он вплотную подошел и к вопросу о сближении и сопоставлении двух групп полярно-противоположных элементов по величине атомных весов их членов, что фактически уже означало отказ от принципа распределения элементов по их атомности и переход к принципу их распределения по атомным весам. Этот переход представлял собой не подготовку к открытию периодического закона, а уже начало самого открытия

К началу 1869 г. Значительная часть элементов была объединена в отдельные естественные группы и семейства по признаку общности химических свойств; наряду с этим другая часть их представлял собой разрозненные, стоявшие особняком отдельные элементы, которые не были объединены в особые группы. Твердо установленными считались следующие:

– группа щелочных металлов – литий, натрий, калий, рубидий и цезий;

– группа щелочноземельных металлов – кальций, стронций и барий;

– группа кислорода – кислород, сера, селен и теллур;

– группа азота – азот, фосфор, мышьяк и сурьма. Кроме того, сюда часто присоединяли висмут, а в качестве неполного аналога азота и мышьяка рассматривали ванадий;

– группа углерода – углерод, кремний и олово, причем в качестве неполных аналогов кремния и олова рассматривали титан и цирконий;

– группа галогенов (галоидов) – фтор, хлор, бром и йод;

– группа меди – медь и серебро;

– группа цинка – цинк и кадмий

– семейство железа – железо, кобальт, никель, марганец и хром;

– семейство платиновых металлов – платина, осмий, иридий, палладий, рутений и родий.

Сложнее дело обстояло с такими элементами, которые могли быть отнесены к разным группам или семействам:

– свинец, ртуть, магний, золото, бор, водород, алюминий, таллий, молибден, вольфрам.

Кроме того был известен ряд элементов, свойства которых были еще недостаточно изучены:

– семейство редкоземельных элементов – иттрий, «эрбий», церий, лантан и «дидим»;

– ниобий и тантал;

– бериллий;

3. День великого открытия

Д.И. был весьма разносторонним ученым. Он давно и очень сильно интересовался вопросами сельского хозяйства. Он принимал самое близкое участие в деятельности Вольного экономического общества в Петербурге (ВЭО), членом которого он состоял. ВЭО организовало в ряде северных губерний артельное сыроварение. Одним из инициаторов этого начинания был Н.В. Верещагин. В конце 1868 г., т.е. в то время как Д.И. заканчивал вып. 2 своей книги, Верещагин обратился в ВЭО с просьбой прислать кого-нибудь из членов Общества для того, чтобы на месте обследовать работу артельных сыроварен. Согласие на такого рода поездку выразил Д.И. В декабре 1868 г. он обследовал ряд артельных сыроварен в Тверской губернии. Для завершения обследования нужна было дополнительная командировка. Как раз на 17 февраля 1869 г. и был назначен отъезд.

Если бы Д.И. мог наперед знать, что именно 17 февраля он займется новым химическим исследованием и что последующая обработка результатов займет у него столько времени, то вряд ли за 2 дня до открытия он взял бы из университета, где работал, отпускное свидетельство для поездки в ряд губерний, начиная с 17 февраля 1869 г.

Рассмотрим, как прошел день 17 февраля и какие события в жизни и творчестве его наполнили. В связи с этими событиями Д.И, не смог в намеченный срок выехать на сыроварни и был вынужден задержаться в Петербурге до начала марта. Все это время он был занят совершением и обработкой периодического закона и его первичной публикацией в виде таблицы элементов.

Чтобы лучше рассмотреть, как протекало открытие, выделим несколько стадий, которые оно прошло в течение этого одного дня:

1) начальная стадия, когда Д.И. нащупал новый принцип распределения элементов, делая выкладки на только что полученном письме от Ходнева;

2) стадия составления первых двух неполных набросков основной части будущей системы элементов;

3) стадия составления карточек элементов для «химического пасьянса»;

4) решающая стадия – составление полного чернового варианта всей системы;

5) заключительная стадия – переписывание набело только что открытой системы элементов для опубликования ее в печати.

В день отъезда Д.И. получил письмо за подписью секретаря ВЭО А.И. Ходнева. Д.И., по свидетельствам современников часто использовал обратную сторону писем для своих научных изысканий. А поскольку его неотступно преследовала мысль о нахождении общей закономерности свойств элементов, то, неудивительно, что, получив письмо, он стал делать на нем наброски будущей системы элементов.

Д.И. сопоставлял не отдельные элементы, а группы элементов, имеющих сходные свойства. Начал он с сопоставления группы щелочных металлов и галоидов. Затем долго искал переход от щелочных к щелочноземельным металлам. Он предполагал, что между ними должны находится т. наз. «переходные» металлы (Cu, Ag, Hg), а затем все же поставил щелочноземельные металлы после щелочных, минуя переходные.

Далее последовали две неполные таблички элементов, составленные на одном листе бумаги, в которых Д.И. продолжал составлять из групп элементов и отдельных элементов, не вошедших в группы, варианты будущей таблицы.

Решающим шагом к открытию периодического закона стало то, что Д.И. попытался сопоставить по величине атомных весов группы несходных элементов. Изначально Д.И. предполагал строить свою систему на основе принципа атомности (валентности) элементов. Однако затем он перешел к принципу распределения на основе величины атомной массы элементов. Тем не менее, принцип атомности не был отброшен, он применялся вкупе с новым принципом. Так, Менделеев выстраивал свои групп на основе не только общности химических свойств элементов, но и на основе их одинаковой валентности. А при составлении будущих периодов таблицы, он отмечал закономерное изменение валентности от1 до 4 при переходе от Li к C, а затем вновь до 1 при переходе к F.

При составлении нижней неполной таблички элементов для Д.И. становилось ясно, что решена была только первая, далеко не самая сложная задача – размещение уже довольно изученных элементов в центральной части будущей таблицы. Предстояла же самая сложная и трудная часть задачи с размещением элементов на периферии формирующейся системы.

В результате составления набросков двух неполных табличек элементов на отдельном листке бумаги выявилось несовершенство метода, примененного для выработки полной таблицы элементов, которая должна была охватить собой все элементы. При неясности положения того или иного элемента, этот элемент приходилось бы передвигать не один раз с места на место; тогда табличка заполнялась бы вычеркиваниями и поправками, что не дало бы возможности быстро ориентироваться при размещении новых элементов. Нужно было найти какой-то более гибкий, более подвижный способ, который позволял бы в любой момент видеть картину распределения элементов как бы в чистом виде, не заслоненную предшествующими переносами, исправлениями и зачеркиваниями. Такой прием Д.И, нашел в карточках с написанными на них элементами. Такие карточки легко можно было переставлять, имея перед глазами всю картину распределения элементов, достигнутого в данный момент. Вместе с тем можно было в любой момент обозревать карточки тех элементов, которые еще не попали в таблицу. Так возник прием, который А.Е. Ферсман очень удачно назвал «пасьянсом».

Все 63 карточки Д.И. разделил на четыре категории по признаку их распространенности и изученности. В 1-ю категорию попало 14 элементов, которые распространены повсеместно и составляют главный материал видимых тел: Al, C, Ca, Cl, Fe, H, K, Mg, N, Na, O, P, S, Si. В силу своей распространенности, эти элементы должны были входить в число хорошо исследованных. Во 2-ю категорию попали такие элементы (21), которые встречаются в свободном виде или в виде соединений, хотя и не распространены повсюду или встречаются в малых количествах: Ag, As, Au, B, Ba, Bi, Br, Co, Cr, Cu, F, Hg, I, Mn, Ni, Pb, Pt, Sb, Sn, Sr, Zn. Эти элементы также должны были входить в число хорошо изученных. В 3-ю категорию вошло 18 элементов редких, но хорошо исследованных: Be, Ce, Cd, Cs, In, Ir, Li, Mo, Os, Pd, Rb, Se, Te, Tl, Ur, Wo, Y. В 4-ю категорию вошло 10 элементов редких и мало исследованных: Di, Er, La, Nb, Rh, Ru, Ta, Th, Va, Zr. В дальнейшем Д.И. мог сделать некоторые перестановки элементов между первыми тремя категориями и последней категорией. Когда карточки всех 63 элементов были готовы, Д.И. не прибегая еще к «химическому пасьянсу», установил порядок включения в свою готовящуюся систему отдельных категорий элементов. Но так как все элементы были изображены теперь на карточках, то можно предположить, что разбивка их на различные категории выражалась в разбивке карточек на несколько кучек. Вероятно, в первую очередь в таблицу должны были войти наиболее изученные элементы, причем те, связи между которыми были бесспорно выяснены на предшествующей стадии открытия периодического закона. При определении порядка включения элементов в таблицу признак распространенности не имел существенного значения, тогда как решающее значение приобретал атомный вес. Сначала вносились в таблицу более легкие, а затем – более тяжелые элементы. Первая кучка – наиболее изученные элементы; следующие за ней две кучки – менее изученные элементы; из них вторая – «легкие», третья – «тяжелые» элементы; четвертая – слабо изученные элементы. Разбив карточки всех элементов на кучки, Д.И. определил этим общую последовательность составления таблицы элементов.

К моменту раскладывания «пасьянса» открытие периодического закона вступило в свою решающую фазу. Определяющая роль атомного веса при сопоставлении групп несходных элементов выяснилась в полной мере. Центральная часть будущей системы элементов сформировалась в своей основе. Осталось «только» одно: доказать всеобщий характер того принципа, который уже был доказан в его применении к центральной части таблицы. Но это «только» составляло главную, непреодолимую еще трудность при создании периодической системы элементов.

При доведении до конца построения своей таблицы элементов Д.И. продолжил применять тот же прием сопоставления групп несходных элементов, с помощью которого он начал строить эту таблицу в первых записях, сделанных на письме Ходнева, и в обеих неполных табличках. Так, путем преставления карточек элементов на основе имеющихся уже сведений, и был открыт периодический закон.

Когда периодический закон был открыт, и была составлена система элементов в первом ее варианте, оставалось оформить достигнутый результат в виде чистой таблицы, по которой другие ученые могли бы ознакомиться с открытием, сделанным Д.И. При переписывании таблицы набело Д.И. внес следующие изменения: элементы в ней располагались не в порядке убывания, а в порядке возрастания атомных весов, т.е. более тяжелые элементы подписывались под более легкими, а на тех местах, где были пропуски и где можно было предполагать не известные еще элементы, Д.И. поставил знак вопроса и предположительно вычислил атомные веса.

Отдав в типографию для набора рукопись «Опыта системы элементов», Д.И. не мог уехать из Петербурга на сыроварни до тех пор, пока не пришла корректура. Для набора требовалось время, и это время Д.И. использовал для того, чтобы обобщить и обработать сделанное им открытие в виде статьи, изложив в ней то, что было заключено в «Опыте системы элементов». К моменту написания статьи Д.И. составил уже много различных вариантов системы элементов, основанной на их атомном весе. Свою статью он озаглавил «Соотношение свойств с атомным весом элементов»

В своей статье Д.И. писал: «Убедясь предыдущею таблицею в том, что атомный вес элементов может служить опорою их системы, я первоначально расположил элементы в непрерывном порядке по величине атомного веса и тотчас заметил, что существуют некоторые перерывы в ряду таким образом поставленных элементов». Анализируя это и другие высказывания Д.И., можно сделать вывод о том, что Д.И. сначала составил свой «Опыт системы элементов» (путем сопоставления групп элементов), а затем убедился, что атомный вес может являться основой системы элементов. После этого Д.И. приступил к дальнейшему исследованию открытой им закономерности, и это свое дальнейшее исследование начал с того, что расположил все элементы в непрерывный ряд по возрастанию их атомных весов. Это опровергает мнение некоторых химиков, будто сначала Д.И. составил общий ряд элементов по величине их атомного веса, и только после этого он заметил периодичность в изменении свойств; затем он разделил общий ряд на периоды и составил из этих отрезков свой «Опыт системы элементов». Все содержание статьи неоспоримо свидетельствует о том, что в этой статье Д.И. отразил, обобщил и подытожил тот путь, каким он шел в день 17 февраля 1869 г. При создании периодической системы элементов.

4. После дня великого открытия

В марте 1869 г., тут же после окончания статьи «Соотношение свойств с атомным весом элементов» Д.И. поехал на артельные сыроварни. Накануне отъезда, 1 марта 1869 г. Он разослал многим химикам отпечатанный листок с «Опытом системы элементов». 6 марта состоялся доклад о системе элементов в заседании русского химического общества.

По причине отсутствия Д.И. в Петербурге, доклад о его открытии сделал профессор Н.А. Меншуткин. В связи с этим позднее возникли различные легенды по этому поводу. Наиболее распространенной стала легенда о мнимой болезни Д.И., которую распространил Б.Н. Меншуткин (сын Н.А. Меншуткина). А М.Н. Младенцев предложил совсем уж невероятное объяснение: «Первое сообщение было сделано 6 марта 1869 г. В заседании Химического общества проф. Н.А. Меншуткиным, так как сам Д.И., видимо, волновался и не решался выступить, хотя ему и ясно было все великое значение настоящего открытия». Все эти легенды ни в коей мере не соответствуют действительности. Причина выступления Меншуткина вместо Менделеева была совсем в другом.

5. Применение Д.И. Менделеевым методов научного познания

Научное открытие такого масштаба, как открытие периодического закона, не могло бы совершиться в столь краткий срок, если бы его автор не владел в совершенстве подлинно научным методом познания, методом научного исследования явлений природы.

1) Метод восхождения.

Метод восхождения отвечает движению познания от непосредственно данного, исходного, к раскрываемому лишь опосредованно, при помощи абстрактного мышления. Следовательно, метод восхождения в самой общей форме выражает то обстоятельство, что развитие мысли в ходе научного познания, как и всякое развитие совершается не хаотически, а в определенном направлении, строго последовательно. Сам Д.И. писал: «Познание и полное обладание предметами состоит из трех степеней: 1) наблюдение, констатирование факта, я вижу, но не знаю, как сделать, отчего и пр. Ему соответствует описание, изучение факта. 2) Соотношение факта с некоторыми другими – закон, этому соответствует измерение. 3) Теория – связь внутренняя с цельным миросозерцанием… начинается гипотезою, кончается теоретическим открытием новых явлений, выводом всего из одного положения. Этому соответствует предсказание явления в совершенной его точности, открытие новых явлений».

Таким образом, становится понятно, что, вопреки существующим в нашей литературе мнениям, Д.И. не был приверженцем только индуктивного метода. Индукцию в ее правильном понимании Д.И. не противопоставляет дедукции, а фактически рассматривает в единстве с ней.

При таком методе познания происходит переход от простейших «клеточек», как их назвал сам Д.И. к более общим законам. Такой «клеточкой» стало рассмотрение в 1-ой части «Основ химии» поваренной соли NaCl. Можно сказать, что, выбрав NaCl в качестве исходного вещества при изложении систематической части химии, Д.И. выбрал нечто простое, обычное, множество раз встречающееся в практике человека. Именно такой и должна быть «клеточка» науки, с которой следует начинать изложение этой науки. Дело в том, что в этом соединении уже были даны в их естественной связи (химической) представители двух наиболее характерных, причем полярно противоположных, химических элементов – Na и Cl отправляясь от соотношения обоих этих элементов, существующего в самой природе, Д.И. нашел сразу ключ к дальнейшему развитию своей творческой мысли. Именно отсюда вытекала необходимость сопоставить две группы наиболее несходных между собой элементов – галогенов и щелочных металлов.

Следует еще отметить, что на всем протяжении совершаемого открытия Д.И. строго придерживался выработавшейся последовательности – переходить от известного к неизвестному и от более известного к менее известному.

Всякий закон в науке устанавливается в итоге обобщения. Тем самым рассмотрение метода восхождения непосредственно приводит к рассмотрению другого, связанного с ним метода, который можно назвать методом обобщения.

2) Метод обобщения. Переход от особенного ко всеобщему.

Путь познания любого закона природы исторически, вполне закономерно проходит отдельные ступени. В общем случае таких ступеней можно выделить три:

а) Исходным является собирание или накопление отдельных, единичных фактов, относящихся к изучаемому кругу явлений. Регистрируя каждый такой отдельный факт, мы высказываем полученный нами результат в форме единичности .

б) По мере накопления отдельных фактов во избежание того, чтобы не образовался неразличимый хаос данных, мы группируем или классифицируем собранный материал. Мы соединяем все сходное в одну особую группу, отличая ее от столь же особых категорий или групп. Соответственно этому мы выражаем достигнутый теперь результат в форме особенности .

в) Разбивка известных фактов на разобщенные между собой особые группы по признаку их особых свойств и на основе учета сходства, противопоставленного различию, лежит в основе искусственных или формальных классификаций. Естественная же классификация предполагает прежде всего нахождение общего признака или общей основы, лежащей в фундаменте всего данного круга явлений, и объединяющей собой все разобщенные группы. В соответствии с этим за ступенью особенности всегда следует та высшая ступень познания, на которой открывается закон природы. Открывая закон природы, мы выражаем достигнутый результат в форме всеобщности .

Таким образом, путь познания закона – это путь движения научной мысли от единичности (свойства отдельных элементов) к особенности (группы сходных по свойствам элементов) и от особенности к всеобщности (периодический закон).

Развитие научного познания, идущего от единичного через особенное ко всеобщему, может быть охарактеризовано в соответствии с тем, как логически соотносятся между собой различные звенья в общей цепи поступательного движения научной мысли. Если совокупность всех взаимосвязанных элементов принять за целое, то разбивку элементов на различные обособленные между собой группы мы можем рассматривать как деление целого на части. В таком случае переход от отдельных, обособленных групп к общей системе выступит как переход от анализа к синтезу. Напротив, вычленение или выделение из общей системы отдельных групп элементов будет означать обратное движение от синтетического подхода к аналитическому. По сути дела вся стадия разбивки элементов на их естественные группы представляет собой стадию анализа, если ее рассматривать по отношению ко всей совокупности химических элементов. Но вместе с тем, если ее брать по отношению к отдельным элементам, она выступает уже как подготовка перехода к синтезу через объединение элементов в некоторые новые единицы – группы, из которых, как из строительных кирпичиков можно будет построить здание целостной, охватывающей все элементы системы, т.е. осуществить теоретический синтез. В ходе открытия периодического закона и создания системы элементов выпукло проявилась взаимосвязь между синтезом и анализом в познавательном процессе – подготовительная функция анализа и заключительная синтеза.

3) Сравнительный метод

Суть метода, который Д.И. называл сравнительным, состоит в том, что элементы рассматриваются не изолированно, не сами по себе, а в их общей взаимной связи и в их взаимных отношениях. Уже на первых порах его применения сравнительный метод дал громадный выигрыш, так как позволял не только сопоставлять разные группы элементов между собой, но и проверять, насколько их сопоставление проведено правильно, а в связи с этим, насколько правильно составлены и сами группы.

Будучи исходным пунктом для разработки и применения сравнительного метода, сличение атомных весов подводило непосредственно к формулировке самого периодического закона, основанной на признании, что «величина атомного веса определяет характер элемента…».

Развитие Д.И. сравнительного подхода к изучению элементов вылилось 17 февраля 1869 г. В конкретную задачу: составить общую систему и найти в ней естественное место для каждой группы, а тем самым для каждого отдельного элемента.

С одной стороны, периодический закон был открыт при помощи сравнительного метода, а с другой – его открытие явилось мощным стимулом к дальнейшему совершенствованию этого метода.


Заключение

периодический менделеев познание научный

В отличие от своих предшественников, Менделеев не только составил таблицу и указал на наличие несомненных закономерностей в численных величинах атомных весов, но и решился назвать эти закономерности общим законом природы. Он взял на себя смелость на основании предположения, что атомная масса предопределяет свойства элемента, изменить принятые атомные веса некоторых элементов и подробно описать свойства неоткрытых ещё элементов.

Д.И. Менделеев на протяжении многих лет боролся за признание Периодического закона; его идеи получили признание только после того, как были открыты предсказанные Менделеевым элементы: галлий (П. Лекок де Буабодран, 1875), скандий (Л. Нильсен, 1879) и германий (К. Винклер1886) – соответственно экаалюминий, экабор и экасилиций. С середины 1880-х годов Периодический закон был окончательно признан в качестве одной из теоретических основ химии.

Хотя классификация Менделеева и имела значительные достоинства, которые способствовали ее быстрому распространению и превращению в руководящий критерий для исследований в области неорганической химии, она не была полностью лишена недостатков. Первый недостаток таблицы заключался в том, что водород, как одновалентный элемент был помещен в начале I группы. Помещение элементов меди, серебра и золота в I группе вместе со щелочными металлами и в VIII группе вместе с металлами группы железа и группы платины явно непоследовательно. Другие отклонения замечаются в VI, VII, и VIII группах.

Для того, чтобы периодическая система приобрела еще большую предсказательную силу и могла быть усовершенствована, имели значение работы по неорганической химии, проведенные в последние десятилетия XIX века. Толчком к пересмотру классификации послужили исследования редких земель, которые привели к выделению многих элементов, не поддававшихся обычному способу классификации, и к открытию благородных газов Рамзаем и Рэлеем

В начале XX века Периодическая система элементов неоднократно видоизменялась для приведения в соответствие с новейшими научными данными. Д.И. Менделеев и У. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Б. Браунер нашёл решение проблемы размещения в таблице редкоземельных элементов, предложив в 1902 г. помещать все РЗЭ в одну ячейку; в предложенном им длинном варианте таблицы шестой период таблицы был длиннее, чем четвёртый и пятый, которые в свою очередь длиннее, чем второй и третий периоды.

Дальнейшее развитие Периодического закона в было связано с успехами физики: установление делимости атома на основании открытия электрона и радиоактивности в конце концов позволило понять причины периодичности свойств химических элементов и создать теорию Периодической системы.

Мощный толчок для новых исследований внутренней природы элементов был дан открытием в 1898 г. супругами Кюри радия и тем комплексом явлений, которые известны под названием радиоактивности.

Для химии серьёзную проблему составляла необходимость размещения в Периодической таблице многочисленных продуктов радиоактивного распада, имеющих близкие атомные массы, но значительно отличающиеся периоды полураспада. Т. Сведберг в 1909 г. доказал, что свинец и неон, полученные в результате радиоактивного распада и отличающиеся по величине атомных масс от «обычных» элементов, химически им полностью тождественны. В 1911 г. Ф. Содди предложил размещать химически неразличимые элементы, имеющие различные атомные массы (изотопы) в одной ячейке таблицы.

В 1913 г. английский физик Г. Мозли установил, что корень из характеристической частоты рентгеновского излучения элемента (н) линейно зависит от целочисленной величины – атомного номера (Z), который совпадает с номером элемента в Периодической таблице:

где А и b – константы

Закон Мозли дал возможность экспериментально определить положение элементов в Периодической таблице. Атомный номер, совпадающий, как предположил в 1911 г. голландский физик А. Ван Ден Брук, с величиной положительного заряда ядра атома, стал основой классификации химических элементов. В 1920 г. английский физик Дж. Чедвик экспериментально подтвердил гипотезу Ван ден Брука; тем самым был раскрыт физический смысл порядкового номера элемента в Периодической системе. Периодический закон получил современную формулировку: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер атомов элементов».

В 1921–1923 гг., основываясь на модели атома Бора-Зоммерфельда, представляющей собой компромисс между классическими и квантовыми представлениями, Н. Бор заложил основы формальной теории Периодической системы. Причина периодичности свойств элементов, как показал Бор, заключалась в периодическом повторении строения внешнего электронного уровня атома.


Список использованных источников

1. Кедров Б.М. День одного великого открытия. – М.: Эдиториал УРСС, 2001. – 640 с.

2. Ахметов Н.С. Актуальные вопросы курса неорганической химии. – М.: Просвещение, 1991. – 224 с.

3. Корольков Д.В. Основы неорганической химии. – М.: Просвещение, 1982. – 271 с.

4. Джуа М. История химии. – М.: Мир, 1975. – 480 с.

Систематикой химических элементов Д.И.Менделеев стал заниматься в самом начале своей научной деятельности. В 1955-1956 годах он опубликовал 2 работы по исследованию изоморфизма и удельных объемов и установил зависимость между этими характеристиками и свойствами. Он также внимательно изучал работы предшественников, подверг их критическому анализу, систематизировал и обобщил. В своем дневнике он писал: «Наука состоит в отыскании общего. В элементах есть общее... Но признают чересчур многое индивидуальным... связать эти индивидуальности общею идеею - цель моей естественной системы».

Д.И.Менделеев приступил к работе по созданию системы элементов в связи с педагогической работой и подготовкой им знаменитого учебника “Основы химии”. Следовательно, первоначальная цель, которую он ставил перед собой – учебно-педагогическая.

Работая над “Основами химии”, он решил сравнить галогены и щелочные металлы, и пришел к выводу, что столь разные по химическим свойствам эти элементы близки по значению атомных масс, поэтому их можно сблизить в системе элементов:

Ar (F) – 19 Ar (Cl) – 35,5 Ar (Br) - 80

Ar (Na) – 23 Ar (K) – 39 Ar (Rb) – 85,4

Это сопоставление легло в основу таблицы элементов, которую Д.И.Менделеев составил из 64 элементов.

Сопоставление разных групп элементов по их атомным массам привело к открытию закона в форме составления «Опыта системы элементов», четко выявившего периодическую зависимость свойств элементов от их атомных масс.

1 марта 1869 года Д.И.Менделеев разослал химикам ”Опыт системы элементов, основанный на их атомном весе и химическом сходстве”.

6 марта 1869 года на заседании Русского Химического общества Меншуткин от имени Д.И.Менделеева сделал сообщение о соотношении свойств и атомных масс элементов. Основное содержание заключалось в следующем:

1. Элементы, расположенные по величине их атомных масс, представляют явственную периодичность свойств.

2. Сходные по химическим свойствам элементы имеют или близкие массы атомов (платина, иридий, осмий), или последовательно и однообразно увеличивающиеся (калий, рубидий, цезий).

3. Сопоставление элементов или их групп по величине атомных масс, соответствует их так называемой валентности.

4. Распространенные в природе элементы имеют малую атомную массу, а все элементы с малыми атомными массами характеризуются резко выраженными свойствами, поэтому они являются типическими.

5. Величина атомной массы определяет характер элемента.

6. Нужно ждать открытия еще многих неизвестных элементов, например сходных с алюминием и кремнием, с атомными массами 65-75.

7. Величина атомной массы элемента иногда может быть исправлена, если знать аналоги этого элемента.


8. Некоторые аналоги открываются по величине массы их атома.

Основные выводы из этих положений заключаются в том, что физические и химические свойства элементов находятся в периодической зависимости от их атомной массы.

В течение двух последующих лет Менделеев составляет таблицы атомных объемов элементов, которые тоже изменяются периодически. Позднее убеждается, что высшая валентность элементов также периодическая функция.

Эти открытия позволили от «Опыта периодической системы» перейти к «естественной системе элементов».

В 1871г. Д. И. Менделеев пишет статью «Периодическая законность химических элементов» в которой описывает направления развития учения о периодичности:

1. Сущность закона периодичности.

2. Применение закона к систематике элементов.

3. Применение закона к определению атомных масс малоисследованных элементов.

4. Применение закона к определению свойств еще не открытых элементов.

5. Применение закона к исправлению атомных масс элементов.

6. Применение закона к дополнению сведений о формулах химических соединений.

Впервые дана четкая формулировка периодического закона.

Открытие периодического закона

В основу своей работы по классификации химических элементов Д.И. Менделеев положил два их основных и постоянных признака: величину атомной массы и свойства. Он выписал на карточки все известные сведения об открытых и изученных в то время химических элементах и их соединениях. Сопоставляя эти сведения, ученый составил естественные группы сходных по свойствам элементов, сравнение которых между собой показало, что даже элементы несходных групп имеют объединяющие их признаки. Например, близки по значениям атомные массы фтора и натрия, хлора и калия (инертные газы еще не были известны), следовательно, щелочные металлы и галогены можно поставить рядом, выстраивая химические элементы в порядке возрастания атомных масс. Так Д.И. Менделеев объединил естественные группы химических элементов в единую систему. При этом он обнаружил, что свойства элементов изменяются в пределах определенных их совокупностей линейно (монотонно возрастают или убывают), а затем повторяются периодически, то есть через определенное число элементов встречаются сходные. Ученый выделил периоды, в которых свойства химических элементов и образованных ими веществ закономерно изменяются.

На основании этих наблюдений Д.И. Менделеев сформулировал Периодический закон, который в соответствии с принятой в настоящее время терминологией звучит так: «Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от их относительных атомных масс».

Периодический закон и Периодическая система богаты периодическими закономерностями: кроме упоминаемой горизонтальной (по периодам) периодичности есть также периодичность вертикальная (по группам) и диагональная. Именно учет всех видов периодичности позволил Д.И. Менделееву не только предсказать, описать свойства веществ, образованных еще не открытыми химическими элементами, но и указать путь их открытия, природные источники (руды и соединения), из которых могли быть получены соответствующие простые вещества.

Периодический закон Д. И. Mенделеева. Взаимосвязь элементов.

Понятие об элементах как о первичных веществах пришло из глубокой древности и, постепенно видоизменяясь а уточняясь, дошло до нашего времени. Основоположникам научных воззрений на химические элементы являются Р. Бойль (VII в.), М. В. Ломоносов (XVIII в.) и Дальтон (XIX в.).
К началу XIX в. было известно около 30 элементов, к середине XIX в.- около 60. По море накопления числа элементов возникла задача их систематизации. Таких попыток до Д.И. Менделеева было не меньше пятидесяти; за основу систематизации принимались: и атомный вес (ныне называемый атомной массой), и химический эквивалент, и валентность. Подходя к классификации химических элементов метафизически, пытаясь систематизировать только известные в то время элементы, ни один из предшественников Д. И. Менделеева не мог открыть всеобщую взаимосвязь элементов, создать единую стройную систему, отражающую закон развития материи. Эта важная, для науки задача была блестяще разрешена в 1869 г. великим русским ученым Д. И. Менделеевым, открывшим периодический закон.
За основу систематизации Менделеевым были взяты: а) атомный вес и б) химическое сходство между элементами. Наиболее ярким, выразителем сходства свойств элементов является их одинаковая высшая валентность. Как атомный вес (атомная масса), так и высшая валентность элемента представляют собой количественные, числовые константы, удобные для систематизации.
Расположив все известный в то время 63 элемента в ряд по возрастанию атомных масс, Менделеев заметил периодическую повторяемость свойств элементов через неодинаковые промежутки. В результате Менделеевым был создан первый вариант периодической системы.
Закономерный характер изменения атомных масс элементов по вертикалям и горизонталям таблицы, а также образовавшиеся в ней пустые мecта позволили Менделееву смело предсказать наличие n природе ряда элементов, еще не известных в то время науке и даже наметить их атомные массы и основные свойства, исходя из предполагаемого положения элементов в таблице. Это можно било сделать лишь на основе системы, объективно отражающей закон развития материи. Сущность периодического закона Д. И. Менделеев сформулировал в 1869 г.: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов (масс) элементов".

Периодическая система элементов.
В 1871 году Д. И. Менделеев дает второй вариант периодической системы (так называемую короткую форму таблицы), в которой он выявляет различные степени родства между элементами. Этот вариант системы дал возможность Менделееву предсказать существование 12 элементов и свойства трех из них описать с очень большой точностью. В период с 1875 по 1886 гг. эти три элемента были открыты и выявилось полное совпадение их свойств с теми, которые были предсказаны великим русским ученым. Эти элементы получили следующие названия: скандий, галлий, германий. После этого периодический закон полечил всеобщее признание как объективный закон природы и ныне является фундаментом химии, физики и других естественных наук.

error: Content is protected !!