Виды органических веществ. Теория химического строения органических соединений. Классификация органических веществ

Введение

1. Предельные углеводороды

1.1. Насыщенные неразветвленные соединения

1.1.1. Одновалентные радикалы

1.2. Насыщенные разветвленные соединения с одним заместителем

1.3. Насыщенные разветвленные соединения с несколькими заместителями

2. Непредельные углеводороды

2.1. Ненасыщенные неразветвленные углеводороды с одной двойной связью (алкены)

2.2. Ненасыщенные неразветвленные углеводороды с одной тройной связью (алкины)

2.3. Ненасыщенные разветвленные углеводороды

3. Циклические углеводороды

3.1. Алифатические углеводороды

3.2. Ароматические углеводороды

3.3. Гетероциклические соединения

4. Углеводороды содержащие функциональные группы

4.1. Спирты

4.2. Альдегиды и кетоны 18

4.3. Карбоновые кислоты 20

4.4. Эфиры 22

4.4.1. Простые эфиры 22

4.4.2. Сложные эфиры 23

4.5. Амины 24

5. Органические соединения с несколькими функциональными группами 25

Литература

Введение

В основу научной классификации и номенклатуры органических соединений положены принципы теории химического строения органических соединений А.М. Бутлерова.

Все органические соединения подразделяют на следующие основные ряды:

Ациклические - их называют также алифатическими, или соединениями жирного ряда. Эти соединения имеют открытую цепь углеродных атомов.

К ним относятся:

  1. Предельные (насыщенные)
  2. Непредельные (ненасыщенные)

Циклические - соединения с замкнутой в кольцо цепью атомов. К ним относятся:

  1. 1. Карбоциклические (изоциклические) – соединения, в кольцевую систему которых входят только углеродные атомы это:
    а) алициклические (предельные и непредельные);
    б) ароматические.
  2. Гетероциклические - соединения, в кольцевую систему которых, кроме атома углерода, входят атомы других элементов - гетероатомы (кислород, азот, сера и др.)

В настоящее время для наименования органических соединений применяются три типа номенклатуры: тривиальная, рациональная и систематическая номенклатура - номенклатура IUPAC (ИЮПАК) - International Union of Pure and Applied Chemistry (Международного союза теоретической и прикладной химии).

Тривиальная (историческая) номенклатура - первая номенклатура, возникшая в начале развития органической химии, когда не существовало классификации и теории строения органических соединений. Органическим соединениям давали случайные названия по источнику получения (щавелевая кислота, яблочная кислота, ванилин), цвету или запаху (ароматические соединения), реже - по химическим свойствам (парафины). Многие такие названия часто применяются до сих пор. Например: мочевина, толуол, ксилол, индиго, уксусная кислота, масляная кислота, валериановая кислота, гликоль, аланин и многие другие.

Рациональная номенклатура - по этой номенклатуре за основу наименования органического соединения обычно принимают название наиболее простого (чаще всего первого) члена данного гомологического ряда. Все остальные соединения рассматриваются как производные этого соединения, образованные замещением в нем атомов водорода углеводородными или иными радикалами (например: триметилуксусный альдегид, метиламин, хлоруксусная кислота, метиловый спирт). В настоящее время такая номенклатура применяется только в тех случаях, когда она дает особенно наглядное представление о соединении.

Систематическая номенклатура - номенклатура IUPAC - международная единая химическая номенклатура. Систематическая номенклатура основывается на современной теории строения и классификации органических соединений и пытается решить главную проблему номенклатуры: название каждого органического соединения должно содержать правильные названия функций (заместителей) и основного скелета углеводорода и должно быть таким, чтобы по названию можно было написать единственно правильную структурную формулу.

Процесс создания международной номенклатуры был начат в 1892 г. (Женевская номенклатура ), продолжен в 1930 г. (Льежская номенклатура ), с 1947 г. дальнейшее развитие связано с деятельностью комиссии ИЮПАК по номенклатуре органических соединений. Публиковавшиеся в разные годы правила ИЮПАК собраны в 1979 г. в “голубой книге ” . Своей задачей комиссия ИЮПАК считает не создание новой, единой системы номенклатуры, а упорядочение, “кодификацию”, имеющейся практики. Результатом этого является сосуществование в правилах ИЮПАК нескольких номенклатурных систем, а, следовательно, и нескольких допустимых названий для одного и того же вещества. Правила ИЮПАК опираются на следующие системы: заместительную, радикало-функциональную, аддитивную (соединительную), заменительную номенклатуру и т.д.

В заместительной номенклатуре основой названия служит один углеводородный фрагмент, а другие рассматриваются как заместители водорода (например, (C 6 H 5) 3 CH – трифенилметан).

В радикало-функциональной номенклатуре в основе названия лежит название характеристической функциональной группы, определяющей химический класс соединения, к которому присоединяют наименование органического радикала, например:

C 2 H 5 OH - этиловый спирт ;

C 2 H 5 Cl - этилхлорид ;

CH 3 –O–C 2 H 5 - метилэтиловый эфир ;

CH 3 –CO–CH = CH 2 - метилвинилкетон .

В соединительной номенклатуре название составляют из нескольких равноправных частей (например, C 6 H 5 –C 6 H 5 бифенил) или добавляя обозначения присоединенных атомов к названию основной структуры (например, 1,2,3,4-тетрагидронафталин, гидрокоричная кислота, этиленоксид, стиролдихлорид).

Заменительную номенклатуру применяют при наличии неуглеродных атомов (гетероатомов) в молекулярной цепи: корни латинских названий этих атомов с окончанием “а” (а-номенклатура) присоединяют к названиям всей структуры, которая получилась бы, если бы вместо гетероатомов был углерод (например, CH 3 –O–CH 2 –CH 2 –NH–CH 2 –CH 2 –S–CH 3 2-окса-8-тиа-5-азанонан).

Система ИЮПАК является общепризнанной в мире, и лишь адаптируется соответственно грамматике языка страны. Полный набор правил применения системы ИЮПАК ко многим менее обычным типам молекул длинен и сложен. Здесь представлено лишь основное содержание системы, но это позволяет осуществлять наименование соединений, для которых применяется система.

1. ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ

1.1. Насыщнные неразветвленные соединения

Названия первых четырех предельных углеводородов тривиальные (исторические названия) - метан, этан, пропан, бутан. Начиная с пятого, названия образованы греческими числительными, соответствующими количеству атомов углерода в молекуле, с добавлением суффикса "–АН ", за исключением числа "девять", когда корнем служит латинское числительное "нона".

Таблица 1. Названия предельных углеводородов

НАЗВАНИЕ

НАЗВАНИЕ

1.1.1. Одновалентные радикалы

Одновалентные радикалы, образованные из насыщенных неразветвленных предельных углеводородов отнятием водорода от конечного углеродного атома, называют заменяя суффикс"–АН " в названии углеводорода суффиксом "–ИЛ ".

Атом углерода со свободной валентностью получает номер? Эти радикалы называют нормальными или неразветвленными алкилами :

СН 3 – - метил;

СН 3 –СН 2 –СН 2 –СН 2 – - бутил;

СН 3 –СН 2 –СН 2 –СН 2 –СН 2 –СН 2 – - гексил.

Таблица 2. Названия углеводородных радикалов

1.2. Насыщенные разветвленные соединения с одним заместителем

Номенклатура ИЮПАК для алканов в индивидуальных названиях сохраняет принцип Женевской номенклатуры. Называя алкан, исходят из названия углеводорода, отвечающего самой длиной углеродной цепи в данном соединении (главная цепь), а затем указывают радикалы, примыкающие к этой основной цепи.

Главная углеродная цепь, во-первых, должна быть самой длинной, во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная.

*Для названия насыщенных разветвленных соединений выбирают самую длинную цепочку из атомов углерода:

* Нумеруют выбранную цепь от одного конца до другого арабскими цифрами, причем, нумерацию начинают с того конца, к которому ближе находится заместитель:

*Указывают положение заместителя (номер атома углерода, у которого находиться алкильный радикал):

*Называют алкильный радикал в соответствии с его положением в цепи:

*Называют основную (самую длинную углеродную цепь):

Если заместителем будет являться галоген (фтор, хлор, бром, йод), то все номенклатурные правила сохраняются:

Тривиальные названия сохраняются только для следующих углеводородов:

Если в углеводородной цепи находятся, несколько одинаковых заместителей, то перед их названием ставится приставка “ди”, “три”, “тетра”, “пента”, “гекса” и т.д., обозначающая число присутствующих групп:

1.3. Насыщенные разветвлнные соединения с несколькими заместителями

При наличии двух и более разных боковых цепей, их можно перечислять: а) в алфавитном порядке или б) в порядке возрастания сложности.

а) При перечислении разных боковых цепей в алфавитном порядке умножающие префиксы не учитываются. Сперва названия атомов и групп располагают в алфавитном порядке, а затем вставляют умножающие префиксы и цифры местоположения (локанты):

2-метил-5-пропил-3,4-диэтилоктан

б) При перечислении боковых цепей в порядке возрастания сложности исходят из следующих принципов:

Менее сложной является цепь, у которой общее число углеродных атомов меньше, например:

менее сложна, чем

Если общее число атомов углерода в разветвленном радикале одинаково, то менее сложной будет боковая цепь с наиболее длинной основной цепочкой радикала, например:

менее сложна, чем

Если две или более боковые цепи находятся в равнозначном положении, то более низкий номер получает та цепь, которая в названии перечисляется первой, независимо от того, соблюдается ли порядок возрастающей сложности или алфавитный:

а) алфавитный порядок:

б) порядок расположения по сложности:

Если в углеводородной цепи находятся несколько углеводородных радикалов и они различны по сложности, а при нумерации получаются различающиеся ряды нескольких цифр, их сравнивают, расположив цифры в рядах в порядке возрастания. “Наименьшими” считают цифры того ряда, в котором первая отличающаяся цифра меньше (например: 2, 3, 5 меньше, чем 2, 4, 5 или 2, 7, 8 меньше, чем 3, 4, 9). Этот принцип соблюдается независимо от природы заместителей.

В некоторых справочниках для определения выбора нумерации используют сумму цифр, нумерацию начинают с той стороны, где сумма цифр, обозначающих положение заместителей, наименьшая:

2, 3 , 5, 6, 7, 9 - ряд цифр наименьший

2, 4 , 5, 6, 8, 9

2+3+5+6+7+9 = 32 - сумма номеров заместителей наименьшая

2+4+5+6+8+9 = 34

следовательно, углеводородную цепь нумеруют слева направо, тогда название углеводорода будет:

(2, 6, 9–триметил–5,7–дипропил–3,6–диэтилдекан)

(2,2,4–триметилпентан, но не 2,4,4–триметилпентан)

Если в углеводородной цепи находится, несколько различных заместителей (например, углеводородные радикалы и галогены), то перечисление заместителей производится либо в алфавитном порядке, либо в порядке возрастания сложности (фтор, хлор, бром, йод):

а) алфавитный порядок 3–бром–1–иод –2–метил –5–хлорпентан;

б) порядок возрастания сложности: 5–хлор–3–бром–1–иод–2–метилпентан.

Литература

  1. Номенклатурные правила ИЮПАК по химии. М., 1979, т.2, полутома 1,2
  2. Справочник химика. Л., 1968
  3. Бенкс Дж. Названия органических соединений. М., 1980

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

>> Химия: Классификация органических соединений

Вы уже знаете, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория А. М. Бутлерова . Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цепи (циклы) в молекулах.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Существует несколько определений, что такое органические вещества, чем они отличаются от другой группы соединений — неорганических. Одно из наиболее распространенных объяснений вытекает из названия «углеводороды». Действительно, в основе всех органических молекул находятся цепочки атомов углерода, связанные с водородом. Присутствуют и другие элементы, получившие наименование «органогенные».

Органическая химия до открытия мочевины

Издавна люди пользуются многими природнымие веществами и минералами: серой, золотом, железной и медной рудой, поваренной солью. За все время существования науки — с древнейших времен и до первой половины XIX века — ученые не могли доказать связь живой и неживой природы на уровне микроскопического строения (атомов, молекул). Считалось, что своим появлением органические вещества обязаны мифической жизненной силе — витализму. Бытовал миф о возможности вырастить человечка «гомункулуса». Для этого надо было сложить в бочонок разные продукты жизнедеятельности, подождать определенное время, пока зародится жизненная сила.

Сокрушительный удар по витализму нанесли работы Веллера, который синтезировал органическое вещество мочевину из неорганических компонентов. Так было доказано, что никакой жизненной силы нет, природа едина, организмы и неорганические соединения образованы атомами одних и тех же элементов. Состав мочевины был известен и до работ Веллера, изучение этого соединения не составляло в те годы большого труда. Замечательным был сам факт получения вещества, характерного для обмена веществ, вне тела животного или человека.

Теория А. М. Бутлерова

Велика роль русской школы химиков в становлении науки, изучающей органические вещества. С именами Бутлерова, Марковникова, Зелинского, Лебедева связаны целые эпохи в развитии органического синтеза. Основоположником теории строения соединений является А. М. Бутлеров. Знаменитый ученый-химик в 60-х годах XIX века объяснил состав органических веществ, причины многообразия их строения, вскрыл взаимосвязь, существующую между составом, строением и свойствами веществ.

На основе выводов Бутлерова удалось не только систематизировать знания об уже существующих органических соединениях. Появилась возможность предсказать свойства еще не известных науке веществ, создать технологические схемы для их получения в промышленных условиях. В полной мере воплощаются в жизнь многие идеи ведущих химиков-органиков в наши дни.

При окислении углеводородов получаются новые органические вещества — представители других классов (альдегидов, кетонов, спиртов, карбоновых кислот). Например, большие объемы ацетилена идут на производство уксусной кислоты. Часть этого продукта реакции в дальнейшем расходуется для получения синтетических волокон. Раствор кислоты (9% и 6%) есть в каждом доме — это обычный уксус. Окисление органических веществ служит основой для получения очень большого числа соединений, имеющих промышленное, сельскохозяйственное, медицинское значение.

Ароматические углеводороды

Ароматичность в молекулах органических веществ — это присутствие одного или нескольких бензольных ядер. Цепочка из 6 атомов углерода замыкается в кольцо, в нем возникает сопряженная связь, поэтому свойства таких углеводородов не похожи на другие УВ.

Ароматические углеводороды (или арены) имеют огромное практическое значение. Широко применяются многие из них: бензол, толуол, ксилол. Они используются как растворители и сырье для производства лекарств, красителей, каучука, резины и других продуктов органического синтеза.

Кислородосодержащие соединения

В составе большой группы органических веществ присутствуют атомы кислорода. Они входят в наиболее активную часть молекулы, ее функциональную группу. Спирты содержат одну или несколько гидроксильных частиц —ОН. Примеры спиртов: метанол, этанол, глицерин. В карбоновых кислотах присутствует другая функциональная частица — карбоксил (—СОООН).

Другие кислородосодержащие органические соединения — альдегиды и кетоны. Карбоновые кислоты, спирты и альдегиды в больших количествах присутсвуют в составе разных органов растений. Они могут быть источниками для получения натуральных продуктов (уксусной кислоты, этилового спирта, ментола).

Жиры являются соединениями карбоновых кислот и трехатомного спирта глицерина. Кроме спиртов и кислот линейного строения, есть органические соединения с бензольным кольцом и функциональной группой. Примеры ароматических спиртов: фенол, толуол.

Углеводы

Важнейшие органические вещества организма, входящие в состав клеток, — белки, ферменты, нуклеиновые кислоты, углеводы и жиры (липиды). Простые углеводы — моносахариды — встречаются в клетках в виде рибозы, дезоксирибозы, фруктозы и глюкозы. Последний в этом коротком списке углевод — основное вещество обмена веществ в клетках. Рибоза и дезоксирибоза — составные части рибонуклеиновой и дезоксирибонуклеиновой кислот (РНК и ДНК).

При расщеплении молекул глюкозы выделяется энергия, необходимая для жизнедеятельности. Сначала она запасается при образовании своеобразного переонсчика энергии — аденозинтрифосфорной кислоты (АТФ). Это вещество переносится кровью, доставляется в ткани и клетки. При последовательном отщеплении от аденозина трех остатков фосфорной кислоты энергия освобождатеся.

Жиры

Липиды — вещества живых организмов, обладающие специфическими свойствами. Они не растворяются в воде, являются гидрофобными частицами. Особенно богаты веществами этого класса семена и плоды некоторых растений, нервная ткань, печень, почки, кровь животных и человека.

Кожа человека и животных содержит множество мелких сальных желез. Выделяемый ими секрет выводится на поверхность тела, смазывает ее, защищает от потери влаги и проникновения микробов. Слой подкожной жировой клетчатки оберегает от повреждений внутренние органы, служит запасным веществом.

Белки

Протеины составляют более половины всех органических веществ клетки, в некоторых тканях их содержание доходит до 80%. Для всех видов белков характерные высокие молекулярные массы, наличие первичной, вторичной, третичной и четвертичной структур. При нагревании они разрушаются — происходит денатурация. Первичная структура — это огромная для микромира цепочка аминокислот. Под действием особых ферментов в пищеварительной системе животных и человека протеиновая макромолекула распадется на составные части. Они попадают в клетки, где происходит синтез органических веществ — других белков, специфичных для каждого живого существа.

Ферменты и их роль

Реакции в клетке протекают со скоростью, которая в производственных условиях трудно достижима, благодаря катализаторам — ферментам. Различают ферменты, действующие только на белки, — липазы. Гидролиз крахмала происходит с участием амилазы. Для разложения на составные части жиров необходимы липазы. Процессы с участием ферментов идут вов всех живых организмах. Если у человека нет в клетках какого-либо фермента, то это сказывается на обмене веществ, в целом на здоровье.

Нуклеиновые кислоты

Вещества, впервые обнаруженные и выделенные из ядер клеток, выполняют функцию передачи наследственных признаков. Основное количество ДНК содержится в хромосомах, а молекулы РНК расположены в цитоплазме. При редупликации (удвоении) ДНК появляется возможность передать наследственную информацию половым клеткам — гаметам. При их слиянии новый организм получает генетический материал от родителей.

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения - химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как C n H 2n+2 , где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов C n H 2n ,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов C n H 2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов C n H 2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу C n H 2n .

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу C n H m , тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид C n H m- X Hal X . Таким образом, монохлорпроизводные алканов имеют формулу C n H 2n+1 Cl , дихлорпроизводные C n H 2n Cl 2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными , с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов C n H 2n+1 OH или C n H 2n+2 O. Общая формула предельных многоатомных спиртов C n H 2n+2 O x , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов C n H 2n-6 O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы . Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу C n H 2n-6 O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH 2 , называют первичными аминами .

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами . Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами . В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид C n H 2 n +3 N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу C n H 2 n -5 N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Например:

пропанон бутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид C n H 2 n O

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой .

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида C n H 2 n O 2

Ароматические монокарбоновые кислоты имеют общую формулу C n H 2 n -8 O 2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Например:

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. C n H 2 n +1 OH или C n H 2 n +2 О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Например:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO 2 .

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу C n H 2 n +1 NO 2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например,

NH 2 -CH 2 -COOH

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу C n H 2 n +1 NO 2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме .

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная .

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

проп-

пент-

гекс-

гепт-

дек(ц)-

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

2. В углеродном скелете отсутствуют кратные связи, следовательно, суффикс, который нужно использовать после корня слова будет -ан, как и у соответствующих предельных ациклических углеводородов (алканов);

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH 2 — , поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH 3 — ). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Формула Название по систематической номенклатуре Тривиальное название
Углеводороды
CH 4 метан болотный газ
CH 2 =CH 2 этен этилен
CH 2 =CH-CH 3 пропен пропилен
CH≡CH этин ацетилен
CH 2 =CH-CH= CH 2 бутадиен-1,3 дивинил
2-метилбутадиен-1,3 изопрен
метилбензол толуол
1,2-диметилбензол орто -ксилол

(о -ксилол)

1,3-диметилбензол мета -ксилол

(м -ксилол)

1,4-диметилбензол пара -ксилол

(п -ксилол)

винилбензол стирол
Спирты
CH 3 OH метанол метиловый спирт,

древесный спирт

CH 3 CH 2 OH этанол этиловый спирт
CH 2 =CH-CH 2 -OH пропен-2-ол-1 аллиловый спирт
этандиол-1,2 этиленгликоль
пропантриол-1,2,3 глицерин
фенол

(гидроксибензол)

карболовая кислота
1-гидрокси-2-метилбензол орто -крезол

-крезол)

1-гидрокси-3-метилбензол мета -крезол

-крезол)

1-гидрокси-4-метилбензол пара -крезол

(п -крезол)

фенилметанол бензиловый спирт
Альдегиды и кетоны
метаналь формальдегид
этаналь уксусный альдегид, ацетальдегид
пропеналь акриловый альдегид, акролеин
бензальдегид бензойный альдегид
пропанон ацетон
Карбоновые кислоты
(HCOOH) метановая кислота муравьиная кислота

(соли и сложные эфиры — формиаты)

(CH 3 COOH) этановая кислота уксусная кислота

(соли и сложные эфиры — ацетаты)

(CH 3 CH 2 COOH) пропановая кислота пропионовая кислота

(соли и сложные эфиры — пропионаты)

C 15 H 31 COOH гексадекановая кислота пальмитиновая кислота

(соли и сложные эфиры — пальмитаты)

C 17 H 35 COOH октадекановая кислота стеариновая кислота

(соли и сложные эфиры — стеараты)

пропеновая кислота акриловая кислота

(соли и сложные эфиры — акрилаты)

HOOC-COOH этандиовая кислота щавелевая кислота

(соли и сложные эфиры — оксалаты)

1,4-бензолдикарбоновая кислота терефталевая кислота
Сложные эфиры
HCOOCH 3 метилметаноат метилформиат,

метиловый эфир мурвьиной кислоты

CH 3 COOCH 3 метилэтаноат метилацетат,

метиловый эфир уксусной кислоты

CH 3 COOC 2 H 5 этилэтаноат этилацетат,

этиловый эфир уксусной кислоты

CH 2 =CH-COOCH 3 метилпропеноат метилакрилат,

метиловый эфир акриловый кислоты

Азотсодержащие соединения
аминобензол,

фениламин

анилин
NH 2 -CH 2 -COOH аминоэтановая кислота глицин,

аминоуксусная кислота

2-аминопропионовая кислота аланин
error: Content is protected !!