Растворы. Растворимость веществ в воде. Урок "растворимые и нерастворимые в воде вещества"

В повседневной жизни люди редко сталкиваются с чистыми веществами. Большинство предметов представляют собой смеси веществ.

Раствор - это в которой компоненты равномерно смешались. Есть несколько их видов по размеру частиц: грубодисперсные системы, молекулярные растворы и коллоидные системы, которые часто называют золи. В этой статье речь идет о молекулярных (или Растворимость веществ в воде - одно из главных условий, влияющих на образование соединений.

Растворимость веществ: что это и зачем нужно

Чтобы разобраться в этой теме, нужно знать, и растворимость веществ. Простым языком, это способность вещества соединяться с другим и образовывать однородную смесь. Если подходить с научной точки зрения, можно рассмотреть более сложное определение. Растворимость веществ - это их способность образовывать с одним или более веществами гомогенные (или гетерогенные) составы с дисперсным распределением компонентов. Существует несколько классов веществ и соединений:

  • растворимые;
  • малорастворимые;
  • нерастворимые.

О чем говорит мера растворимости вещества

Содержание вещества в насыщенной смеси - это мера его растворимости. Как сказано выше, у всех веществ она разная. Растворимые - это те, которые могут развести более 10 г себя на 100 г воды. Вторая категория - менее 1 г при тех же условиях. Практически нерастворимые - это те, в смесь которых переходит менее 0,01 г компонента. В этом случае вещество не может передавать воде свои молекулы.

Что такое коэффициент растворимости

Коэффициент растворимости (k) - это показатель, максимальной массы вещества (г), которая может развестись в 100 г воды или другого вещества.

Растворители

В данном процессе участвуют растворитель и растворенное вещество. Первый отличается тем, что изначально он пребывает в таком же агрегатном состоянии, что и конечная смесь. Как правило, он взят в большем количестве.

Однако многие знают, что в химии вода занимает особое место. Для нее существуют отдельные правила. Раствор, в котором присутствует H 2 O называется водным. Когда говорится о них, жидкость является экстрагентом и тогда, когда она в меньшем количестве. В пример можно привести 80%-ный раствор азотной кислоты в воде. Пропорции здесь не равны Хоть доля воды меньше, чем кислоты, вещество называть 20%-ным раствором воды в азотной кислоте некорректно.

Существуют смеси, в которых отсутствует H 2 O. Они будут носить имя неводная. Подобные растворы электролита представляют собой ионные проводники. Они содержащие один или смеси экстрагентов. В их состав входят ионы и молекулы. Они используются в таких отраслях, как медицина, производство бытовой химии, косметики и в другие направления. Они могут сочетать в себе несколько нужных веществ с различной растворимостью. Компоненты многих средств, которые применяются наружно, являются гидрофобными. Иными словами, они плохо взаимодействуют с водой. В таких могут быть летучими, нелетучими и комбинированными. Органические вещества в первом случае хорошо растворяют жиры. К летучим относятся спирты, углеводороды, альдегиды и другие. Они часто входят в состав бытовой химии. Нелетучие чаще всего применяются для изготовления мазей. Это жирные масла, жидкий парафин, глицерин и прочие. Комбинированные - это смесь летучих и нелетучих, например, этанол с глицерином, глицерин с димексидом. Также они могут содержать воду.

Виды растворов по степени насыщенности

Насыщенный раствор - это смесь химических веществ, содержащая максимальную концентрацию одного вещества в растворителе при определенной температуре. Дальше оно разводиться не будет. В препарате твёрдого вещества заметно выпадение осадка, который находится в динамическом равновесии с ним. Под этим понятием подразумевается состояние, сохраняющееся во времени вследствие его протекания одновременно в двух противоположных направлениях (прямая и обратная реакции) с одинаковой скоростью.

Если вещество при постоянной температуре все еще может разлагаться, то этот раствор - ненасыщенный. Они устойчивы. Но если в них продолжать добавлять вещество, то оно будет разводиться в воде (или другой жидкости), пока не достигнет максимальной концентрации.

Еще один вид - перенасыщенный. В нем содержится больше растворенного вещества, чем может быть при постоянной температуре. Из-за того, что они находятся в неустойчивом равновесии, при физическом воздействии на них происходит кристаллизация.

Как отличить насыщенный раствор от ненасыщенного?

Это сделать достаточно просто. Если вещество - твердое, то в насыщенном растворе можно увидеть осадок. При этом экстрагент может загустевать, как, например, в насыщенном составе вода, в которую добавили сахар.
Но если изменить условия, повысить температуру, то он перестанет считаться насыщенным, так как при более высокой температуре максимальная концентрация этого вещества будет другой.

Теории взаимодействия компонентов растворов

Существует три теории относительно взаимодействия элементов в смеси: физическая, химическая и современная. Авторы первой - Сванте Август Аррениус и Вильгельм Фридрих Оствальд. Они предположили, что вследствие диффузии частицы растворителя и растворённого вещества равномерно распределились по всему объему смеси, но взаимодействия между ними нет. Химическая теория, которую выдвинул Дмитрий Иванович Менделеев, ей противоположна. Согласно ей, в результате химического взаимодействия между ними формируются неустойчивые соединения постоянного или переменного состава, которые называются сольваты.

В настоящее время используется объединенная теория Владимира Александровича Кистяковского и Ивана Алексеевича Каблукова. Она совмещает физическую и химическую. Современная теория гласит, что в растворе существуют как не взаимодействующие частицы веществ, так и продукты их взаимодействия - сольваты, существование которых доказывал Менделеев. В случае, когда экстрагент - вода, их называют гидратами. Явление, при котором образуются сольваты (гидраты) носит имя сольватация (гидратация). Она воздействует на все физико-химические процессы и меняет свойства молекул в смеси. Сольватация происходит благодаря тому, что сольватная оболочка, состоящая из тесно связанных с ней молекул экстрагента, окружает молекулу растворенного вещества.

Факторы, влияющие на растворимость веществ

Химический состав веществ. Правило "подобное притягивает подобное" распространяется и на реагенты. Схожие по физическим и химическим свойствам вещества могут взаимно растворяться быстрее. Например, неполярные соединения хорошо взаимодействуют с неполярными. Вещества с полярными молекулами или ионным строением разводятся в полярных, например, в воде. В ней разлагаются соли, щёлочи и другие компоненты, а неполярные - наоборот. Можно привести простой пример. Для приготовления насыщенного раствора сахара в воде потребуется большее количество вещества, чем в случае с солью. Как это понимать? Проще говоря, вы можете развести гораздо больше сахара в воде, чем соли.

Температура. Чтобы увеличить растворимость твердых веществ в жидкостях, нужно увеличить температуру экстрагента (работает в большинстве случаев). Можно продемонстрировать такой пример. Если положить щепотку хлорида натрия (соль) в холодную воду, то данный процесс займет много времени. Если проделать то же самое с горячей средой, то растворение будет проходить гораздо быстрее. Это объясняется тем, что вследствие повышения температуры возрастает кинетическая энергия, значительное количество которой часто тратится на разрушение связей между молекулами и ионами твёрдого вещества. Однако, когда повышается температура в случае с солями лития, магния, алюминия и щелочами, их растворимость понижается.

Давление. Этот фактор влияет только на газы. Их растворимость увеличивается при повышении давления. Ведь объём газов сокращается.

Изменение скорости растворения

Не стоит путать этот показатель с растворимостью. Ведь на изменение этих двух показателей влияют разные факторы.

Степень раздробленности растворяемого вещества. Этот фактор влияет на растворимость твердых веществ в жидкостях. В цельном (кусковом) состоянии состав разводится дольше, чем тот, который разбит на мелкие куски. Приведем пример. Цельный кусок соли будет растворяться в воде намного дольше, чем соль в виде песка.

Скорость помешивания. Как известно, этот процесс можно катализировать с помощью помешивания. Его скорость также важна, потому что чем она больше, тем быстрее растворится вещество в жидкости.

Для чего нужно знать растворимость твердых веществ в воде?

Прежде всего, подобные схемы нужны, чтобы правильно решать химические уравнения. В таблице растворимости есть заряды всех веществ. Их необходимо знать для правильной записи реагентов и составления уравнения химической реакции. Растворимость в воде показывает, может ли соль или основание диссоциировать. Водные соединения, которые проводят ток, имеют в своем составе сильные электролиты. Есть и другой тип. Те, которые плохо проводят ток, считаются слабыми электролитами. В первом случае компоненты представляют собой вещества, полностью ионизованные в воде. Тогда как слабые электролиты проявляют этот показатель лишь в небольшой степени.

Уравнения химической реакции

Есть несколько видов уравнений: молекулярный, полный ионный и краткий ионный. По сути последний вариант - сокращённая форма молекулярного. Это окончательный ответ. В полном уравнении записаны реагенты и продукты реакции. Теперь наступает очередь таблицы растворимости веществ. Для начала надо проверить, является ли реакция осуществимой, то есть выполняется ли одно из условий проведения реакции. Их всего 3: образование воды, выделение газа, выпадение осадка. Если два первых условия не соблюдаются, нужно проверить последнее. Для этого нужно посмотреть в таблицу растворимости и выяснить, есть ли в продуктах реакции нерастворимая соль или основание. Если оно есть, то это и будет осадок. Далее таблица потребуется для записи ионного уравнения. Так как все растворимые соли и основания - сильные электролиты, то они будут распадаться на катионы и анионы. Далее сокращаются несвязанные ионы, и уравнение записывается в кратком виде. Пример:

  1. K 2 SO 4 +BaCl 2 =BaSO 4 ↓+2HCl,
  2. 2K+2SO 4 +Ba+2Cl=BaSO 4 ↓+2K+2Cl,
  3. Ba+SO4=BaSO 4 ↓.

Таким образом, таблица растворимости веществ - одно из ключевых условий решения ионных уравнений.

Подробная таблица помогает узнать, сколько компонента нужно взять для приготовления насыщенной смеси.

Таблица растворимости

Так выглядит привычная неполная таблица. Важно, что здесь указывается температура воды, так как она является одним из факторов, о которых мы уже говорили выше.

Как пользоваться таблицей растворимости веществ?

Таблица растворимости веществ в воде - один из главных помощников химика. Она показывает, как различные вещества и соединения взаимодействуют с водой. Растворимость твердых веществ в жидкости - это показатель, без которого многие химические манипуляции невозможны.

Таблица очень проста в использовании. В первой строке написаны катионы (положительно заряженные частицы), во второй - анионы (отрицательно заряженные частицы). Большую часть таблицы занимает сетка с определенными символами в каждой ячейке. Это буквы "Р", "М", "Н" и знаки "-" и "?".

  • "Р" - соединение растворяется;
  • "М" - мало растворяется;
  • "Н" - не растворяется;
  • "-" - соединения не существует;
  • "?" - сведения о существовании соединения отсутствуют.

В этой таблице есть одна пустая ячейка - это вода.

Простой пример

Теперь о том, как работать с таким материалом. Допустим, нужно узнать растворима ли в воде соль - MgSo 4 (сульфат магния). Для этого необходимо найти столбик Mg 2+ и спускаться по нему до строки SO 4 2- . На их пересечении стоит буква Р, значит соединение растворимо.

Заключение

Итак, мы изучили вопрос растворимости веществ в воде и не только. Без сомнений, эти знания пригодятся при дальнейшем изучении химии. Ведь растворимость веществ играет там важную роль. Она пригодится при решении и химических уравнений, и разнообразных задач.

Растворение - это самопроизвольный обратимый физико-химический процесс, включающий три основные стадии.

    Стадия атомизации - разрушение кристаллической решетки растворяемого о вещества; процесс эндотермический (D ат Н>О).

2) Стадия сольватации (гидратации) - образование сольватных (гидратных) оболочек вокруг частиц растворенного вещества; процесс экзотермический, (D сол Н<О).

3) Стадия диффузии - равномерное распределение растворенного вещества по всему объему раствора, (D диф Н ≈ О).

Таким образом, теплота растворения (D р Н) является величиной интегральной:

D p H = D ат Н + D сол Н +D диф Н

Теплота растворения – это тепловой эффект растворения 1 моль вещества в бесконечно большом объеме растворителя.

Растворение большинства твердых веществ в воде – процесс эндотермический (D p H > 0), т.к. теплота, поглощаемая на стадии атомизации, не компенсируется теплотой, выделяющейся на стадии сольватации. При растворении газов теплота выделяется (D p H < 0), т.к. их растворение не включает стадию атомизация (газообразные вещества не образуют кристаллических решеток). Растворение жидкостей друг в друге протекает без заметного теплового эффекта (D p H ≈ 0), т.к. главной стадией их растворения является диффузия.

Как любой обратимый процесс, растворение доходит до равновесия. Раствор, находящийся в равновесии с избытком растворяемого вещества, называется насыщенным. В состоянии равновесия скорость растворения равна скорости кристаллизации.

По степени насыщения растворы бывают:

    ненасыщенные : содержат меньше растворенного вещества, чем насыщенные,

    насыщенные,

    пересыщенные : содержат больше растворенного вещества, чем насыщенные (они неустойчивы).

4.3. Растворимость газов, жидкостей и твердых веществ в воде

Растворимость (S ) - это способность вещества растворяться в данном растворителе. Она равна содержанию растворенного вещества в его насыщенном растворе при данной температуре.

Растворимость зависит от природы веществ и термодинамических параметров системы. Влияние природы веществ на растворимость описывается правилом: «Подобное растворяется в подобном ». Другими словами, полярные вещества хорошо растворяются в полярных растворителях, а неполярные - в неполярных. Например: поваренная соль NaCl хорошо растворима в воде и плохо в бензоле; I 2 хорошо растворим в бензоле и плохо в воде.

Растворение газов в воде можно представить схемой:

А(газ) + Н 2 ОА(раствор), D р Н<О

В соответствии с принципом Ле Шателье при повышении температуры равновесие смещается влево, т.е. растворимость уменьшается, а при понижении температуры - вправо, растворимость увеличивается (таблица 3).

Таблица 3 - Растворимость газов (л/1л Н 2 О) при р = 1 атм.

В соответствии с принципом Ле Шателье при увеличении давления равновесие смещается вправо, т.е. растворимость газов растет. Количественная зависимость растворимости газа от давления описывается уравнением Генри (1803 г.):

где k - константа Генри,

p - давление газа над раствором.

Закон Генри позволяет вскрыть причины возникновения кессонной болезни. Она возникает у водолазов, летчиков и представителей других профессий, которые по роду деятельности быстро переходят из среды с высоким давлением в среду с низким давлением.

В период пребывания человека в среде с высоким давлением его кровь и ткани насыщаются азотом (N 2) и частично углекислым газом (СО 2). Накопления кислорода не происходит, так как он расходуется на физиологические процессы в организме. При быстром переходе человека в среду с низким давлением происходит выделение избыточных количеств растворенных газов, которые не успевают диффундировать через легкие и образуют газовые пробки в тканях и кровеносных сосудах. Это приводит к закупорке и разрыву кровеносных капилляров, накоплению пузырьков газа в подкожной жировой клетчатке, в суставах, в костном мозге. Симптомами кессонной болезни являются головокружение, зуд, мышечные и загрудинные боли, нарушение дыхания, паралич и смерть.

На растворимость газов влияет присутствие электролитов в растворе. Эта зависимость описывается уравнением Сеченова (1859 г.):

где S и S o - растворимость газа в растворе электролита и чистой воде,

с - концентрация электролита,

k - константа Сеченова.

Из уравнения Сеченова следует, что чем выше концентрация электролита в растворе, тем ниже растворимость газов. Вот почему растворимость газов в воде больше, чем в плазме (таблица 4).

Таблица 4 - Растворимость газов в чистой воде и плазме крови при 38ºС

Растворение жидкости в воде можно представить схемой:

А (ж) + Н 2 ОА (раствор)

Основной стадией растворения жидкости в жидкости является диффузия, скорость которой возрастает с увеличением температуры. Соответственно, взаимная растворимость жидкостей усиливается с ростом температуры.

Различают три типа жидкостей:

а) неограниченно растворимые друг в друге: Н 2 SO 4 / Н 2 О, С 2 Н 5 ОН / Н 2 О;

б) ограниченно растворимые: С 6 Н 6 / Н 2 О

в) абсолютно нерастворимые: Hg / H 2 O.

Если в систему из двух несмешивающихся жидкостей добавить третий компонент, то отношение его концентраций в каждой жидкости есть величина постоянная при данной температуре (закон распределения Нернста-Шилова) (рисунок 6).

Рисунок 6 - Закон распределения Нернста-Шилова

Закон Нернста-Шилова – теоретическая основа экстракции, одного из способов разделения смесей.

Растворение твердых веществ в воде описывается схемой:

А (к) + Н 2 ОА (раствор), Dр Н > О

Если растворяется труднорастворимый электролит (соль, основание или кислота), то гетерогенное равновесие между твердым веществом и его ионами в насыщенном растворе можно представить схемой:

A n B m (к) nA m+ (aq) + mB n- (aq).

Данное равновесие характеризуется при помощи константы растворимости K s , являющейся константой гетерогенного равновесия:

K s = n · m

Для бинарных электролитов n = m = 1, следовательно

K s = · .

Соответственно S 2 =К s , и S =

Например, при растворении труднорастворимой соли BaSO 4 в воде устанавливается гетерогенное равновесие между кристаллами вещества и его ионами в насыщенном растворе:

BaSO 4 (к) Ba 2+ (aq) + SO 4 2- (aq)

Согласно закону действующих масс, K S = = 1,1·10 -10 .

Отсюда S =
.

Чем меньше K s , тем ниже растворимость вещества и легче формируется осадок труднорастворимого электролита.

Условие образования осадка труднорастворимого электролита можно сформулировать следующим образом: осадок выпадает из насыщенных и пересыщенных растворов. В насыщенном растворе · = K s , а в пересыщенном растворе · > K s

Одним из наиболее важных гетерогенных процессов in vivo является образование костной ткани. Основным минеральным компонентом костной ткани является кальций гидроксофосфат (гидроксоаппатит) Са 5 (РО 4 ) 3 ОН .

Процесс формирование костной ткани можно представить следующим образом. В крови при рН = 7,4 в приблизительно равных количествах находятся анионы НРО 4 2– и Н 2 РО 4 – , а также катионы Са 2+ . После сравнения констант растворимости CаНРО 4 (К S = 2,7∙10 –7) и Cа(Н 2 РО 4) 2 (К S = 1∙10 –3), становится очевидным, что менее растворимой является соль СаНРО 4 . Вследствие этого, именно СаНРО 4 образуется на первой стадии формирования костной ткани:

Са 2+ + НРО 4 2– СаНРО 4 .

Дальнейшее формирование гидроксоаппатита протекает в соответствии с уравнениями:

3 СаНРО 4 + Са 2+ + 2 ОН – Са 4 Н(РО 4) 3 + 2 Н 2 О,

Са 4 Н(РО 4) 3 + Са 2+ + 2 ОН – Са 5 (РО 4) 3 ОН + Н 2 О.

Константа растворимости гидроксоаппатита очень мала (К S = 10 -58), что свидетельствует о высокой устойчивости костной ткани.

При избытке ионов Са 2+ в крови равновесие сдвигается вправо, что приводит к обызвествлению костей. При недостатке Са 2+ равновесие сдвигается влево; происходит разрушение костной ткани. У детей это приводит к рахиту, у взрослых развивается остеопороз.

При недостатке кальция в костной ткани его место могут занять ближайшие электронные аналоги: бериллий и стронций. Их накопление вызывает соответственно бериллиевый и стронциевый рахит (повышенная ломкость и хрупкость костей). При инкорпорации радиоизотопа Sr-90 в костную ткань происходит облучение костного мозга, что может привести к лейкозу и другим онкологическим заболеваниям. Кальций блокирует накопление организмом радиоактивного стронция.

Цель: узнать опытным путем, какие твердые вещества растворяются в воде, а какие не растворяются в воде.

Образовательные:

  • Ознакомить обучающихся с понятиями: растворимые и нерастворимые вещества.
  • Учить доказывать опытным путем правильность предположений о растворимости (нерастворимости) твердых веществ.

Коррекционные:

    Учить самостоятельно пользоваться лабораторным оборудованием, проводить опыты.

  • Развивать речь через объяснение проводимой работы.

Воспитательные:

    Воспитывать усидчивость.

  • Формировать умение общаться и работать в группах.

Вид урока: лабораторная работа.

Средства обучения: учебник “Естествознание” Н.В. Королева, Е.В. Макаревич

Оборудование для лабораторной работы: мензурки, фильтры, инструкции. Твердые вещества: соль, сахар, сода, песок, кофе, крахмал, земля, мел, глина.

Ход урока

I. Организационный момент

У: Здравствуйте, ребята. Поприветствуйте друг друга глазами. Рада вас видеть, присаживайтесь.

. Повторение пройденного

У: Повторим то, что уже знаем о воде:

– что происходит с водой при нагревании?
– что происходит с водой при охлаждении?
– что происходит с водой при замерзании?
– в каких трех состояниях встречается вода в природе?

У: Какие вы молодцы! Все знаете!

III. Изучение нового материала

(Заранее с учениками согласую группы, которыми они будут работать, ребята сами выбирают руководителя лаборатории (на др. лабораторном занятии может быть выбран другой ребенок), который записывает показатели опыта в таблицу и дает устные комментарии при заполнении конечной части таблицы – результата.)

У: Ребята, сегодня на лабораторной работе мы узнаем, какие вещества вода может растворять, а какие – нет. Откройте тетрадь, запишите число и тему урока «Растворимые и нерастворимые в воде вещества». (Прикрепляю к доске. ) Какую цель мы сегодня поставим на уроке?

Р: Узнать какие вещества растворяются в воде, а какие не растворяются. (Прикрепляю к доске. )

У: Все вещества в природе можно разделить на две группы: растворимые и нерастворимые. А какие вещества можно назвать растворимыми ? (Сверимся с учебником стр.80:2) Растворимые в воде вещества – такие, которые при помещении их в воду становятся невидимыми и не оседают на фильтре при фильтрации . (Прикрепляю к доске .)

У: А какие вещества можно назвать нерастворимыми ? (сверимся с учебником стр.47-2) Нерастворимые в воде вещества – такие, которые не растворяются в воде и оседают на фильтре (прикрепляю к доске ).

У: Ребята, как думаете, что нам понадобится для выполнения лабораторной работы?

Р: Вода, какие-то вещества, мензурки, фильтр (показываю воду в графине; мензурки, наполненные сл. веществами: солью, сахаром, содой, песком, кофе, крахмалом, мелом, глиной; пустые мензурки, фильтр ).

У: Что такое фильтр?

Р: Устройство для очищения жидкостей от нерастворимых в ней веществ, которые оседают на нем.

У: А из каких подручных средств можно изготовить фильтр? Молодцы! А мы будем использовать вату (в воронку помещаю кусочек ваты ).

У: Но прежде, чем приступить к выполнению лабораторной работы заполним таблицу (таблица начерчена на доске, использую мелки двух цветов, если ученики предполагают, что вещество полностью растворяется в воде, то отмечаю «+» во второй колонке; если ученики предполагают, что вещество останется на фильтре, то «+» в третьей колонке, и наоборот; цветным мелком фиксирую предполагаемый результат в четвертой колонке – Р (растворимое) или Н (нерастворимое))

Наши предположения Результат
Растворимость Фильтрация
1. Вода + песок + Н
2. Вода + глина
3. Вода + кофе
4. Вода + крахмал
5. Вода + сода
6. Вода + земля
7. Вода + сахар
8. Вода + мел

У: А после выполнения лабораторной работы сверим наши предположения с полученными результатами.

У: Каждая лаборатория будет исследовать два твердых вещества, все результаты будете записывать в отчет «Растворимые и нерастворимые в воде вещества». Приложение 1

У: Ребята, это первая ваша самостоятельная лабораторная работа и перед тем, как вы приступите к ее выполнению, послушайте порядок ее проведения или инструкцию. (Раздаю каждой лаборатории, после прочтения обговариваем .)

Лабораторная работа

(Помогаю если есть необходимость. Может возникнуть трудность с фильтрацией раствора кофе, т.к. фильтр окрасится. Для облегчения заполнения отчетов предлагаю использовать словосочетания, которые прикрепляю на доску. Приложение 3 .)

У: А сейчас проверим наши предположения. Руководители лабораторий, проверьте, подписан ли ваш отчет и прокомментируйте полученные опытным путем результаты. (Начальник лаборатории отчитывается, фиксирую полученный результат мелком другого цвета)

У: Ребята, какие вещества для исследования оказались растворимыми? Какие нет? Сколько совпадений оказалось? Молодцы. Практически все наши предположения подтвердились.

VI. Вопросы для закрепления

У: Ребята, а где человек использует раствор соли, сахара, соды, песка, кофе, крахмала, глины?

VII. Итог урока

У: Какую цель мы сегодня ставили? Выполнили ее? Мы молодцы? Я вами очень довольна! И ставлю всем «отлично».

VIII. Домашнее задание

У: Прочитаете текст для внеклассного чтения на стр.43, ответите на вопросы.

Встаньте, пожалуйста, те ребята, кому наш урок не понравился. Спасибо за честность. А теперь те, кому понравилась наша работа. Спасибо. Всем до свидания.

Растворы играют очень важную роль в природе, науке и технике. Вода, столь широко распространённая в природе, всегда содержит растворённые вещества. В пресной воде рек и озёр их мало, в то время как в морской воде содержится около 3,5% растворённых солей.

В первичном океане (во время появления жизни на Земле) массовая доля солей, по предположениям, была низка, около 1%.

«Именно в этом растворе впервые развились живые организмы, и из этого раствора они получили ионы и молекулы, необходимые для их роста и жизни... С течением времени живые организмы развивались и изменялись, что позволило им покинуть водную среду и перейти на сушу и затем подняться в воздух. Они приобрели эту способность, сохранив в своих организмах водный раствор в виде жидкостей, содержащих необходимый запас ионов и молекул» - вот так оценивает роль растворов в возникновении и развитии жизни на Земле известный американский химик, лауреат Нобелевской премии Лайнус Полинг. Внутри нас, в каждой нашей клеточке - напоминание о первичном океане, в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.

В каждом живом организме бесконечно течёт по сосудам - артериям, венам и капиллярам - волшебный раствор, составляющий основу крови, массовая доля солей в нём такая же, как в первичном океане, - 0,9%. Сложные физико-химические процессы, происходящие в организмах человека и животных, также протекают в растворах. Усвоение пищи связано с переводом питательных веществ в раствор. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Многие технологические процессы в химической и других отраслях промышленности, например получение соды, удобрений, кислот, металлов, бумаги, протекают в растворах. Изучение свойств растворов занимает очень важное место в современной науке. Так что же такое раствор?

Отличие раствора от других смесей в том, что частицы составных частей распределяются в нём равномерно, и в любом микрообъёме такой смеси состав одинаков.

Поэтому под растворами понимали однородные смеси, состоящие из двух или более однородных частей. Это представление исходило из физической теории растворов.

Сторонники физической теории растворов, которую развивали Вант-Гофф, Аррениус и Оствальд, считали, что процесс растворения является результатом диффузии, т. е. проникновения растворённого вещества в промежутки между молекулами воды.

В противоположность представлениям физической теории растворов Д. И. Менделеев и сторонники химической теории растворов доказывали, что растворение является результатом химического взаимодействия растворённого вещества с молекулами воды. Поэтому правильнее (точнее) определять раствор как однородную систему, состоящую из частиц растворённого вещества, растворителя и продуктов их взаимодействия.

В результате химического взаимодействия растворённого вещества с водой образуются соединения - гидраты. О химическом взаимодействии говорят такие признаки химических реакций, как тепловые явления при растворении. Например, вспомните, что растворение серной кислоты в воде протекает с выделением такого большого количества теплоты, что раствор может закипеть, а потому льют кислоту в воду (а не наоборот).

Растворение других веществ, например хлорида натрия, нитрата аммония, сопровождается поглощением теплоты.

М. В. Ломоносов установил, что растворы замерзают при более низкой температуре, чем растворитель. В 1764 г. он писал: «Морозы солёного рассолу не могут в лёд превратить удобно, как одолевают пресного».

Гидраты - это непрочные соединения веществ с водой, существующие в растворе. Косвенным доказательством гидратации является существование твёрдых кристаллогидратов - солей, в состав которых входит вода. Её в этом случае называют кристаллизационной. Например, к кристаллогидратам относится хорошо известная соль голубого цвета - медный купорос CuSО 4 5Н 2 О. Безводный сульфат меди (II) - кристаллы белого цвета. Изменение цвета сульфата меди (II) на голубой при растворении его в воде и существование голубых кристаллов медного купороса является ещё одним доказательством гидратной теории Д. И. Менделеева.

В настоящее время принята теория, которая объединяет обе точки зрения, - физико-химическая теория растворов. Её предсказывал ещё в 1906 г. Д. И. Менделеев в своём замечательном учебнике «Основы химии»: «Две указанные стороны растворения и гипотезы, до сих пор приложенные к рассмотрению растворов, хотя имеют отчасти различные исходные точки, но без всякого сомнения, по всей вероятности, приведут к общей теории растворов, потому что одни общие законы управляют как физическими, так и химическими явлениями».

Растворимость веществ в воде зависит от температуры. Как правило, растворимость твёрдых веществ в воде увеличивается с повышением температуры (рис. 126), а растворимость газов - уменьшается, поэтому воду можно почти полностью освободить от растворённых в ней газов кипячением.

Рис. 126.
Растворимость веществ в зависимости от температуры

Если растворять в воде хлорид калия КСl, применяющийся как удобрение, то при комнатной температуре (20 °С) может раствориться только 34,4 г соли в 100 г воды; сколько бы ни перемешивали раствор с остатком нерастворившейся соли, больше соли не растворится - раствор будет насыщен этой солью при данной температуре.

Если же при этой температуре в 100 г воды растворить хлорида калия меньше чем 34,4 г, то раствор будет ненасыщенным.

Из некоторых веществ сравнительно легко получить пересыщенные растворы. К ним относятся, например, кристаллогидраты - глауберова соль (Na 2 SO 4 10Н 2 O) и медный купорос (CuSO 4 5Н 2 O).

Пересыщенные растворы готовят так. Приготавливают насыщенный раствор соли при высокой температуре, например при температуре кипения. Избыток соли отфильтровывают, накрывают колбу с горячим фильтратом ватой и осторожно, избегая сотрясений, медленно охлаждают при комнатной температуре. Приготовленный таким образом раствор, предохраняемый от толчков и попадания пыли, может храниться довольно долго. Но стоит только в такой пересыщенный раствор внести стеклянную палочку, на кончике которой имеется несколько крупинок этой соли, как немедленно начнётся её кристаллизация из раствора (рис. 127).

Рис. 127.
Мгновенная кристаллизация вещества из пересыщенного раствора

Глауберова соль широко используется в качестве сырья на химических заводах. Добывают её зимой в заливе Кара-Богаз-Гол, который сравнительно изолирован от Каспийского моря. Летом из-за высокой скорости испарения воды залив заполняется сильно концентрированным раствором соли. Зимой, в связи с понижением температуры, растворимость её уменьшается и соль кристаллизуется, что и лежит в основе её добычи. Летом кристаллы соли растворяются, и добыча её прекращается.

В самом солёном из морей мира - Мёртвом море - концентрация солей так велика, что на любом помещённом в воду этого моря предмете нарастают причудливые кристаллы (рис. 128).

Рис. 128.
В воде Мёртвого моря из растворённых в ней солей вырастают красивые причудливые кристаллы

При работе с веществами важно знать их растворимость в воде. Вещество считают хорошо растворимым, если при комнатной температуре в 100 г воды растворяется больше 1 г этого вещества. Если при таких условиях растворяется меньше 1 г вещества в 100 г воды, то такое вещество считается малорастворимым. К практически нерастворимым веществам относятся такие, растворимость которых меньше 0,01 г в 100 г воды (табл. 9).

Таблица 9
Растворимость некоторых солей в воде при 20 °С



Совершенно нерастворимых веществ в природе не существует. Например, даже атомы серебра чуть-чуть переходят в раствор из изделий, помещённых в воду. Как известно, раствор серебра в воде убивает микробов.

Ключевые слова и словосочетания

  1. Растворы.
  2. Физическая и химическая теории растворов.
  3. Тепловые явления при растворении.
  4. Гидраты и кристаллогидраты; кристаллизационная вода.
  5. Насыщенные, ненасыщенные и пересыщенные растворы.
  6. Хорошо растворимые, малорастворимые и практически нерастворимые вещества.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Почему в горячем чае кусочек сахара растворяется быстрее, чем в холодном?
  2. Приведите примеры хорошо растворимых, малорастворимых и практически нерастворимых в воде веществ различных классов, пользуясь таблицей растворимости.
  3. Почему аквариумы нельзя заполнять быстро охлаждённой прокипячённой водой (она должна постоять несколько дней)?
  4. Почему ранки, промытые водой, в которую были помещены серебряные изделия, заживают быстрее?
  5. Пользуясь рисунком 126, определите массовую долю хлорида калия, содержащегося в насыщенном растворе при 20 °С.
  6. Может ли разбавленный раствор быть одновременно и насыщенным?
  7. К 500 г насыщенного при 20 °С раствора сульфата магния (см. рис. 126) прилили достаточный для проведения реакции объём раствора хлорида бария. Найдите массу выпавшего осадка.

Растворимость — это свойство вещества образовывать с различными растворителями гомогенные смеси. Как мы уже упоминали, количество растворяемого вещества, необходимое для получения насыщенного раствора и определяет этого вещества. В связи с этим растворимость имеет ту же меру, что и состав, например, массовая доля растворенного вещества в его насыщенном растворе или количество растворенного вещества в его насыщенном растворе.

Все вещества с точки зрения его растворимости можно классифицировать на:

  • Хорошо растворимые – в 100 г воды способно раствориться более 10 г. вещества.
  • Малорастворимые — в 100 г воды способно раствориться менее 1 г. вещества.
  • Нерастворимые — в 100 г воды способно раствориться менее 0,01 г. вещества.

Известно, что если полярность растворяемого вещества схожа с полярностью растворителя, то оно скорее всего растворится. Если же полярности разные, то с большой долей вероятности раствора не получится. Почему же так происходит?

Полярный растворитель – полярное растворяемое вещество.

Для примера опишем раствор поваренной соли в воде. Как мы уже знаем, молекулы воды имеют полярную природу с частичным положительным зарядом на каждом атоме водорода и частичным отрицательным – на атоме кислорода. А твердые ионные вещества, вроде хлорида натрия, содержат катионы и анионы. Поэтому, когда поваренную соль помещают в воду, частичный положительный заряд на атомах водорода молекул воды притягивается отрицательно заряженным ионом хлора в NaCl. Аналогично, частичный отрицательный заряд на атомах кислорода молекул воды притягивается положительно заряженным ионом натрия в NaCl. И, поскольку притяжение молекул воды для ионов натрия и хлора сильнее взаимодействия, удерживающего их вместе, соль растворяется.

Неполярный растворитель – неполярное растворяемое вещество.

Попробуем растворить кусочек тетрабромида углерода в тетрахлориде углерода. В твердом состоянии молекулы тетрабромида углерода удерживаются вместе благодаря очень слабому дисперсионному взаимодействию. При помещению его в тетрахлорид углерода его молекулы будут располагаться более хаотично, т.е. увеличивается энтропия системы и соединение растворится.

Равновесия при растворении

Рассмотрим раствор малорастворимого соединения. Для того, чтобы между твердым веществом и его раствором установилось равновесие, раствор должен быть насыщенным и соприкасаться с нерастворившейся частью твердого вещества.

Например, пусть равновесие установилось в насыщенном растворе хлорида серебра:

AgCl(тв)=Ag + (водн.) + Cl — (водн.)

Рассматриваемое соединение является ионным и в растворенном виде присутствует в виде ионов. Нам уже известно, что в гетерогенных реакциях концентрация твердого вещества остается постоянной, что позволяет включить ее в константу равновесия. Поэтому выражение для будет выглядеть следующим образом:

K = [ Cl — ]

Такая константа называется произведением растворимости ПР , при условии, что концентрации выражаются в моль/л.

ПР = [ Cl — ]

Произведение растворимости равно произведению молярных концентраций ионов, участвующих в равновесии, в степенях, равных соответствующим стехиометрическим коэффициентам в уравнении равновесия.
Следует отличать понятие растворимости и произведения растворимости. Растворимость вещества может меняться при добавлении в раствор еще какого-либо вещества, а произведение растворимости не зависит от присутствия в растворе дополнительных веществ. Хотя эти две величины взаимосвязаны, что позволяет зная одну величину, вычислить другую.

Зависимость растворимости от температуры и давления

Вода играет важную роль в нашей жизни, она способна растворять большое количество веществ, что имеет большое значение для нас. Поэтому основное внимание уделим именно водным растворам.

Растворимость газов повышается при росте давления газа над растворителем, а растворимость твердых и жидких веществ зависит от давления несущественно.

Уильям Генри впервые пришел к выводу, что количество газа, которое растворяется при постоянной температуре в заданном объеме жидкости, прямо пропорциональна его давлению . Данное утверждение известно как закон Генри и выражается оно следующим соотношением:

С = k·P ,

где С – растворимость газа в жидкой фазе

Р – давление газа над раствором

k – постоянная Генри

На следующем рисунке приведены кривые зависимости растворимости некоторых газов в воде от температуры при постоянном давлении газа над раствором (1 атм)

Как видно, растворимость газов уменьшается с ростом температуры, в отличие от большинства ионных соединений, растворимость которых растет с увеличением температуры.

Влияние температуры на растворимость зависит от изменения энтальпии, которое происходит при процессе растворения. При протекании эндотермического процесса происходит увеличение растворимости с ростом температуры. Это следует из уже известного нам : если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, - то равновесие сместится в направлении той реакции, которая противодействует этому изменению.

Представим, что мы имеем дело с раствором, находящимся в равновесии с частично растворившимся веществом. И этот процесс является эндотермическим, т.е. идет с поглощением теплоты из вне, тогда:

Вещество + растворитель + теплота = раствор

Согласно принципу Ле – Шателье, при эндотермическом процессе, равновесие смещается в направлении, способствующее уменьшению поступления теплоты, т.е. вправо. Таким образом, растворимость увеличивается. Если же процесс экзотермический , то повышение температуры приводит к уменьшению растворимости.


зависимость растворимости ионных соединеий от Температуры

Известно, что существуют растворы жидкостей в жидкостях . Некоторые из них могут растворяться друг в друге в неограниченных количествах, как вода и этиловый спирт, а другие — растворяются лишь частично. Так, если попробовать растворить четыреххлористый углерод в воде, то при этом образуются два слоя: верхний — насыщенный раствор воды в четыреххлористом углероде и нижний - насыщенный раствор четыреххлористого углерода в воде. При повышении температуры, в основном, взаимная растворимость таких жидкостей увеличивается. Это происходит до тех пор, пока не будет достигнута критическая температура, при которой обе жидкости смешиваются в любых пропорциях. От давления растворимость жидкостей практически не зависит.

При вводе в смесь, состоящую из двух несмешивающихся между собой жидкостей, вещества, которое может растворяться в любой из этих двух жидкостей, то его распределение между этими жидкостями будет пропорционально растворимости в каждой из них. Т.е. согласно закону распределения вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:

С 1 /С 2 = К,

где С 1 и С 2 – концентрации вещества в двух жидкостях

К – коэффициент распределения.

Категории ,
error: Content is protected !!